Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this study was to evaluate the mechanical stimuli transfer at the bone-implant interface via stress and strain energy density transfer parameters. This study also aimed to investigate the effect of different implant stiffness and parafunctional loading values on the defined mechanical stimuli transfer from the implant to the surrounding bone. Methods: A three-dimensional finite element model of two-piece threaded dental implant with internal hexagonal connection and mandibular bone block was constructed. Response surface method through face-centred central composite design was applied to examine the influence of two independent factors variables using three levels. The analysis model was fitted to a second-order polynomial equation to determine the response values. Results: The results showed that the implant stiffness was more effective than the horizontal load value in increasing the stress and strain energy density transfers. The interaction between both factors was significant in decreasing the likelihood of bone resorption. Decreasing the implant stiffness and horizontal load value led to the increased stress transfer and unexpected decrease in the strain energy density, except at the minimum level of the horizontal load. The increase in the implant stiffness and horizontal load value (up to medium level) have increased the strain energy transfer to the bone. Conclusions: The stress and strain energy density were transferred distinctively at the bone–implant interface. The role of both implant stiffness and parafunctional loading is important and should be highlighted in the preoperative treatment planning and design of dental implant.
Czasopismo
Rocznik
Tom
Strony
147--159
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
- Fakulti Kejuruteraan & Teknologi Mekanikal, Universiti Malaysia Perlis (UniMAP), Kampus Alam UniMAP, Pauh Putra, 02600 Arau, Perlis, Malaysia.
autor
- Fakulti Kejuruteraan & Teknologi Mekanikal, Universiti Malaysia Perlis (UniMAP), Kampus Alam UniMAP, Pauh Putra, 02600 Arau, Perlis, Malaysia.
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Jln. Tun Hamdan Sheikh Tahir, 13200 Kepala Batas, Pulau Pinang, Malaysia.
autor
- Fakulti Kejuruteraan & Teknologi Mekanikal, Universiti Malaysia Perlis (UniMAP), Kampus Alam UniMAP, Pauh Putra, 02600 Arau, Perlis, Malaysia.
autor
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Jln. Tun Hamdan Sheikh Tahir, 13200 Kepala Batas, Pulau Pinang, Malaysia.
Bibliografia
- [1] ARMENTIA M., ABASOLO M., CORIA I., ALBIZURI J., Fatigue design of dental implant assemblies: a nominal stress approach, Metals, 2020, 10 (6), DOI: 10.3390/met10060744.
- [2] BATAINEH K., AL JANAIDEH M., Effect of different biocompatible implant materials on the mechanical stability of dental implants under excessive oblique load, Clin. Implant. Dent. Relat. Res., 2019, 21 (6), DOI: 10.1111/cid.12858.
- [3] BAYATA F., YILDIZ C., The effects of design parameters on mechanical failure of Ti-6Al-4V implants using finite element analysis, Eng. Fail. Anal., 2020, 110, DOI: 10.1016/j.engfailanal.2020.104445.
- [4] BIDEZ M.W., MISCH C.E., Chapter 5 – Clinical Biomechanics in Implant Dentistry, Mosby, 2015.
- [5] DANTAS T.A., CARNEIRO NETO J.P., ALVES J.L., VAZ P.C.S., SILVA F.S., In silico evaluation of the stress fields on the cortical bone surrounding dental implants: comparing rootanalogue and screwed implants, J. Mech. Behav. Biomed. Mater, 2020, 104, DOI: 10.1016/j.jmbbm.2020.103667.
- [6] ELIAS D.M., VALERIO C.S., DE OLIVEIRA D.D., MANZI F.R., ZENÓBIO E.G., SERAIDARIAN P.I., Evaluation of different heights of prosthetic crowns supported by an ultra-short implant using three-dimensional finite element analysis, Int. J. Prosthodont., 2020, 33 (1), DOI: 10.11607/ijp.6247.
- [7] FIORELLINI J.P., SOURVANOS D., SARIMENTO H., KARIMBUX N., LUAN K.W., Periodontal and implant radiology, Dent. Clin. N. Am., 2021, 65 (3), DOI: 10.1016/j.cden.2021.02.003.
- [8] GEFEN A., Optimizing the biomechanical compatibility of orthopedic screws for bone fracture fixation, Med. Eng. Phys., 2002, 24 (5), DOI: 10.1016/S1350-4533(02)00027-9.
- [9] HAASE K., ROUHI G., Prediction of stress shielding around an orthopedic screw: using stress and strain energy density as mechanical stimuli, Comput. Biol. Med., 2013, 43 (11), DOI: 10.1016/j.compbiomed.2013.07.032.
- [10] IBRAHIM M.I.F., ROSLI M.U., ISHAK M.I., ZAKARIA M.S., JAMALLUDIN M.R., KHOR C.Y., RAHIM W.M.F.W.A., NAWI M.A.M., SHAHRIN S., Simulation-based optimization of injection molding parameter for meso-scale product of dental component fabrication using response surface methodology (RSM), AIP Conf. Proc., 2018, 2030 (1), DOI: 10.1063/1.5066719.
- [11] ISHAK M.I., ABDUL KADIR M.R., Biomechanics in Dentistry: Evaluation of Different Surgical Approaches to Treat Atrophic Maxilla Patients, Springer, 2013.
- [12] ISHAK M.I., DAUD R., IBRAHIM I., MAT F., MANSOR N.N., A review of factors influencing peri-implant bone loss, AIP Conf. Proc., 2021, 2347 (1), DOI: 10.1063/5.0051600.
- [13] ISHAK M.I., SHAFI A.A., ROSLI M.U., KHOR C.Y., ZAKARIA M.S., RAHIM W.M.F.W.A., JAMALLUDIN M.R., Biomechanical evaluation of different abutment-implant connections – a nonlinear finite element analysis, AIP Conf. Proc., 2017, 1885 (1), DOI: 10.1063/1.5002258.
- [14] KHOR C.Y., ISHAK M.I., ROSLI M.U., JAMALLUDIN M.R., ZAKARIA M.S., YAMIN A.F.M., ABDUL AZIZ M.S., ABDULLAH M.Z., Influence of material properties on the fluid-structure interaction aspects during molded underfill process, MATEC Web. Conf., 2017, 97, DOI: 10.1051/matecconf/20179701059.
- [15] KIM W.H., LEE J.-C., LIM D., HEO Y.-K., SONG E.-S., LIM Y.-J., KIM B., Optimized dental implant fixture design for the desirable stress distribution in the surrounding bone region: a biomechanical analysis, Materials, 2019, 12 (17), DOI: 10.3390/ma12172749.
- [16] LIU C., XING Y., LI Y., LIN Y., XU J., WU D., Bone quality effect on short implants in the edentulous mandible: a finite element study, BMC Oral Health, 2022, 22 (1), DOI: 10.1186/s12903-022-02164-8.
- [17] MACEDO J.P., PEREIRA J., FARIA J., SOUZA J.C.M., ALVES J.L., LÓPEZ-LÓPEZ J., HENRIQUES B., Finite element analysis of peri-implant bone volume affected by stresses around Morse taper implants: effects of implant positioning to the bone crest, Comput. Methods Biomech. Biomed. Engin., 2018, 21 (12), DOI: 10.1080/10255842.2018.1507025.
- [18] MANGANO F.G., SHIBLI J.A., SAMMONS R.L., IACULLI F., PIATTELLI A., MANGANO C., Short (8-mm) locking-taper implants supporting single crowns in posterior region: a prospective clinical study with 1-to 10-years of follow-up, Clin. Oral Implants Res., 2014, 25 (8), DOI: 10.1111/clr.12181.
- [19] MAQUET P., WOLFF J., FURLONG R., The Law of Bone Remodelling, Springer, Berlin Heidelberg, 2012.
- [20] MARCIÁN P., WOLFF J., HORÁČKOVÁ L., KAISER J., ZIKMUND T., BORÁK L., Micro finite element analysis of dental implants under different loading conditions, Comput. Biol. Med., 2018, 96, DOI: 10.1016/j.compbiomed.2018.03.012.
- [21] NAJEEB S., MALI M., YAQIN S.A.U., ZAFAR M.S., KHURSHID Z., ALWADAANI A., MATINLINNA J.P., Chapter 21: Dental Implants Materials and Surface Treatments, Woodhead Publishing, 2019.
- [22] NAVEAU A., SHINMYOUZU K., MOORE C., AVIVI-ARBER L., JOKERST J., KOKA S., Etiology and measurement of periimplant crestal bone loss (CBL), J. Clin. Med., 2019, 8 (2), DOI: 10.3390/jcm8020166.
- [23] NAWI M.A.M., RAZMAN AMIN M., KASIM M.S., IZAMSHAH R., ISHAK M.I., KHOR C.Y., ROSLI M.U., JAMALLUDIN M.R., MOHAMAD SYAFIQ A.K., The influence of spiral blade distributor on pressure drop in a swirling fluidized bed, IOP Conf Ser: Mater. Sci. Eng., 2019, 551 (1), DOI: 10.1088/1757-899x/551/1/012106.
- [24] NIROOMAND M.R., ARABBEIKI M., Implant stability in different implantation stages: analysis of various interface conditions, Inform. Med. Unlocked, 2020, 19, DOI: 10.1016/j.imu.2020.100317.
- [25] ODIN G., SAVOLDELLI C., BOUCHARD P.-O., TILLIER Y., Determination of Young’s modulus of mandibular bone using inverse analysis, Med. Eng. Phys., 2010, 32 (6), DOI: 10.1016/j.medengphy.2010.03.009.
- [26] OMAR A., ISHAK M.I., HARUN M.N., SULAIMAN E., KASIM N.H.A., Effects of different angulation placement of mini-implant in orthodontic, Appl. Mech. Mater, 2012, 121–126, DOI: 10.4028/www.scientific.net/AMM.121-126.1214.
- [27] PATIL S.M., DESHPANDE A.S., BHALERAO R.R., METKARI S.B., PATIL P.M., A three-dimensional finite element analysis of the influence of varying implant crest module designs on the stress distribution to the bone, Dent. Res. J. (Isfahan), 2019, 16 (3), 145–152.
- [28] PERREN S.M., HUGGLER A., RUSSENBERGER M., ALLGÖWER M., MATHYS R., SCHENK R., WILLENEGGER H., MÜLLER M.E., The reaction of cortical bone to compression, Acta Orthop. Scand. Suppl., 1969, 125.
- [29] PROCHOR P., FROSSARD L., SAJEWICZ E., Effect of the material’s stiffness on stress-shielding in osseointegrated implants for bone-anchored prostheses: a numerical analysis and initial benchmark data, Acta Bioeng. Biomech., 2020, 22 (2), DOI: 10.37190/ABB-01543-2020-02.
- [30] QIN W., CONG M., REN X., WEN H., Design of realistic chewing trajectory for dynamic analysis of the dental prosthesis, Acta Bioeng. Biomech., 2020, 22 (3), DOI: 10.37190/ABB-01581-2020-02.
- [31] ROBAU-PORRUA A., PÉREZ-RODRÍGUEZ Y., SORIS-RODRÍGUEZ L.M., PÉREZ-ACOSTA O., GONZÁLEZ J.E., The effect of diameter, length and elastic modulus of a dental implant on stress and strain levels in peri-implant bone: a 3D finite element analysis, Biomed. Mater Eng., 2020, 30, DOI: 10.3233/BME-191073.
- [32] SCHWITALLA A.D., ABOU-EMARA M., SPINTIG T., LACKMANN J., MÜLLER W.D., Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone, J. Biomech., 2015, 48 (1), DOI: 10.1016/j.jbiomech.2014.11.017.
- [33] SHEMTOV-YONA K., RITTEL D., On the mechanical integrity of retrieved dental implants, J. Mech. Behav. Biomed. Mater, 2015, 49, DOI: 10.1016/j.jmbbm.2015.05.014.
- [34] SOMMER M., ZIMMERMAN J., GRIZE L., STÜBINGER S., Marginal bone loss one year after implantation: a systematic review of different loading protocols, Int. J. Oral Maxillofac. Surg., 2020, 49 (1), DOI: 10.1016/j.ijom.2019.03.965.
- [35] STANFORD C.M., BRAND R.A., Toward an understanding of implant occlusion and strain adaptive bone modeling and remodeling, J. Prosthet. Dent., 1999, 81 (5), DOI: 10.1016/S0022-3913(99)70209-X.
- [36] TEKIN S., DEĞER Y., DEMIRCI F., Evaluation of the use of PEEK material in implant-supported fixed restorations by finite element analysis, Niger J. Clin. Pract., 2019, 22 (9), DOI: 10.4103/njcp.njcp_144_19.
- [37] TRIBST J.P.M., DAL PIVA A.M.D.O., BORGES A.L.S., BOTTINO M.A., Influence of socket-shield technique on the biomechanical response of dental implant: threedimensional finite element analysis, Comput. Methods Biomech. Biomed. Engin., 2020, 23 (6), DOI: 10.1080/10255842.2019.1710833.
- [38] TURNER C.H., Three rules for bone adaptation to mechanical stimuli, Bone, 1998, 23 (5), DOI: 10.1016/S8756-3282(98)00118-5.
- [39] VAHDATI A., ROUHI G., A model for mechanical adaptation of trabecular bone incorporating cellular accommodation and effects of microdamage and disuse, Mech. Res. Commun., 2009, 36 (3), DOI: 10.1016/j.mechrescom.2008.10.004.
- [40] WĄDOŁOWSKI P., KRZESIŃSKI G., GUTOWSKI P., Finite element analysis of mini-plate stabilization of human mandible angle fracture – a comparative study, Acta Bioeng. Biomech., 2020, 22 (3), DOI: 10.37190/ABB-01617-2020-02.
- [41] YALÇIN M., KAYA B., LAÇIN N., ARI E., Three-dimensional finite element analysis of the effect of endosteal implants with different macro designs on stress distribution in different bone qualities, Int. J. Oral Maxillofac. Implants, 2019, 34 (3), DOI: 10.11607/jomi.7058.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e887061e-f6f7-41fa-9e0b-23e0ae7fa20d