Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents a project of an innovative technological line for producing stretch foil. The technological innovation consists of the fact that the foil is produced from a material composed of primary raw material and up to 80% recyclate. The new product cannot be used differently from the traditional one, as it is produced 100% from primary raw material. Additionally, recyclate is produced from waste originating mainly from agriculture. The production line includes systems allowing the use of materials contaminated with organic particles without needing a thorough cleaning. Another innovation is the use of low-temperature waste heat in the production process. It comes from the cooling of the first calender roll. Until now, this heat has dissipated in the atmosphere. Low-temperature waste heat was transformed into high-temperature heat and used in the technological process to prepare the raw material. A heat recovery line was designed based on two cascaded, hydraulically coupled compressor heat pumps to transform low-temperature waste heat into high-temperature technological heat. The designed system can be expanded and adapted to current production needs. The developed technological line solves several problems. It helps to manage difficult-to-manage post-production waste from agriculture and other sectors of the economy. It reduces energy consumption and raw materials from non-renewable sources, significantly reducing CO2 and other greenhouse gas emissions. This is in line with the assumptions of the European Green Deal, which implements a circular economy and is based on renewable energy sources. Currently, the technology is being developed and implemented.
Wydawca
Rocznik
Tom
Strony
271--282
Opis fizyczny
Bibliogr. 32 poz., fig.
Twórcy
autor
- Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska 164, 02-787 Warsaw, Poland
autor
- Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska 164, 02-787 Warsaw, Poland
autor
- Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska 164, 02-787 Warsaw, Poland
autor
- Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska 164, 02-787 Warsaw, Poland
Bibliografia
- 1. European Parliament. Topics. Plastic waste and recycling in the EU: facts and figures. https://www.europarl.europa.eu/topics/en/article/20181212STO21610/plastic-waste-and-recycling-in-the-eu-facts-and-figures (Accessed: 13.08.2024).
- 2. Alsabri A., Tahir F., Al-Ghamdi S.G. Environmental impacts of polypropylene (PP) production and prospects of its recycling in the GCC region. Materials Today: Proceedings. 2022, 56, 2245–2251. https://doi.org/10.1016/j.matpr.2021.11.574.
- 3. Adoption of the Paris Agreement. In: United Nations Framework Convention on Climate Change Conference of the Parties Twenty-first session. Paris, France, 30 November – 11 December 2015. https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (Accessed: 01.09.2024).
- 4. Plastics Europe. Plastics - The Facts 2021. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/ (Accessed: 01.09.2024).
- 5. Thakur M., Sharma A., Chandel M., Pathania D. Modern applications and current status of green nanotechnology in environmental industry. In: Green Functionalized Nanomaterials for Environmental Applications. Elsevier, 2022, 259–281. https://doi.org/10.1016/B978-0-12-823137-1.00010-5.
- 6. Wongsirichot P. Natural Renewable Polymers Part I: Polysaccharides. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier, 2024, B9780443157424000077. https://doi.org/10.1016/B978-0-443-15742-4.00007-7.
- 7. Chen X., Chen S., Xu Z., Zhang J., Miao M., Zhang D. Degradable and recyclable bio-based thermoset epoxy resins. Green Chem. 2020, 22(13), 4187–4198. https://doi.org/10.1039/D0GC01250E.
- 8. Singh J., Krasowski A., Singh S.P. Life cycle inventory of HDPE bottle‐based liquid milk packaging systems. Packag Technol Sci. 2011, 24(1), 49–60. https://doi.org/10.1002/pts.909.
- 9. Sharma B., Goswami Y., Sharma S., Shekhar S. Inherent roadmap of conversion of plastic waste into energy and its life cycle assessment: A frontrunner compendium. Renewable and Sustainable Energy Reviews. 2021, 146, 111070. https://doi.org/10.1016/j.rser.2021.111070.
- 10. Sarker M., Kabir A., Rashid M.M., Molla M., Din Mohammad A.S.M. Waste Polyethylene Terephthalate (PETE-1) Conversion into Liquid Fuel. J. Fundam. Renew. Energy and Appl. 2011, 1, 1–5. https://doi.org/10.4303/jfrea/R101202.
- 11. Spilka M., Kania A., Nowosielski R. Integrated recycling technology. Journal of Achievements in Materials and Manufacturing Engineering, 2008, 31(1), 97–102. https://delibra.bg.polsl.pl/Content/35758/0000050220.pdf (Accessed: 30.08.2024).
- 12. Balu R., Dutta N.K., Roy Choudhury N. Plastic Waste Upcycling: A Sustainable Solution for Waste Management, Product Development, and Circular Economy. Polymers. 2022, 14(22), 4788. https://doi.org/10.3390/polym14224788.
- 13. Chen H., Wan K., Zhang Y., Wang Y. Waste to Wealth: Chemical Recycling and Chemical Upcycling of Waste Plastics for a Great Future. ChemSusChem. 2021, 14(19), 4123–4136. https://doi.org/10.1002/cssc.202100652.
- 14. Hou Q., Zhen M., Qian H., Nie Y., Bai X., Xia T., Laiq Ur Rehman M., Li Q., Ju M. Upcycling and catalytic degradation of plastic wastes. Cell Reports Physical Science. 2021, 2(8), 100514. https://doi.org/10.1016/j.xcrp.2021.100514.
- 15. Ellis L.D., Rorrer N.A., Sullivan K.P., Otto M., McGeehan J.E., Román-Leshkov Y., Wierckx N., Beckham G.T. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 2021, 4(7), 539–556. https://doi.org/10.1038/s41929-021-00648-4.
- 16. Bijańska J., Wodarski K. Hard coal production in Poland in the aspect of climate and energy policy of the European Union and the war in Ukraine. Investment case study. Resour. Policy 2024, 88, 104390. https://doi.org/10.1016/j.resourpol.2023.104390.
- 17. Bórawski P., Bełdycka-Bórawska A., Holden L. Changes in the Polish Coal Sector Economic Situation with the Background of the European Union Energy Security and Eco-Efficiency Policy. Energies 2023, 16, 726. https://doi.org/10.3390/en16020726.
- 18. EUR-Lex. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (Text with EEA relevance). https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009L0028 (Accessed: 4.11.2024).
- 19. Tran V.L. Stochastic Models of Solar Radiation Processes. General Mathematics. Ph.D. Thesis. University of Orleans, Orleans, France, 2013. https://theses.hal.science/tel-00994598/file/vanly.tran_3423_vm.pdf.
- 20. Politaki D., Alouf S. Stochastic Models for Solar Power. In: Proceedings of the EPEW 2017–European Performance Engineering Workshop. Berlin, Germany, 7–8 September 2017, 282–297.
- 21. Farahmand M.Z., Nazari M.E., Shamlou S., Shafie-khah M. The simultaneous impacts of seasonal weather and solar conditions on PV panels electrical characteristics. Energies 2021, 14, 845. https://doi.org/10.3390/en14040845.
- 22. Verdejo H., Awerkin A., Kliemann W., Becker C. Modelling uncertainties in electrical power systems with stochastic differential equations. Int. J. Electr. Power Energy Syst. 2019, 113, 322–332. https://doi.org/10.1016/j.ijepes.2019.05.054.
- 23. Loukatou A., Howell S., Johnson P., Duck P. Stochastic wind speed modelling for estimation of expected wind power output. Appl. Energy 2018, 228, 1328–1340. https://doi.org/10.1016/j.apenergy.2018.06.117.
- 24. Obukhov S., Ibrahim A., Davydov D.Y., Alharbi T., Ahmed E.M., Ali Z.M. Modeling wind speed based on fractional Ornstein-Uhlenbeck process. Energies 2021, 14, 5561. https://doi.org/10.3390/en14175561.
- 25. Kaczmarek J., Kolegowicz K., Szymla W. Restructuring of the Coal Mining Industry and the Challenges of Energy Transition in Poland (1990–2020). Energies 2022, 15, 3518. https://doi.org/10.3390/en15103518.
- 26. Brodny J., Tutak M., Grebski W. Empirical Assessment of the Efficiency of Poland’s Energy Transition Process in the Context of Implementing the European Union’s Energy Policy. Energies 2024, 17(11), 2689. https://doi.org/10.3390/en17112689.
- 27. Demay Y., Agassant J.F. The Polymer Film Casting Process – An Overview. International Polymer Processing. 2021, 36(3), 264-275. https://doi.org/10.1515/ipp-2020-4061.
- 28. Kanai T., Campbell G.A. Film Processing Advances. 2nd edition. Carl Hanser Verlag GmbH & Co, 2014.
- 29. Dziadowiec D., Matykiewicz D., Szostak M., Andrzejewski J. Overview of the Cast Polyolefin Film Extrusion Technology for Multi-Layer Packaging Applications. Materials. 2023, 16(3), 1071. https://doi.org/10.3390/ma16031071.
- 30. Kloziński A., Jakubowska P. Folie wytwarzane z dodatkiem recyklatów – przetwórstwo, właściwości. Inżynieria i Aparatura Chemiczna. 2010, 49(5), 61–62. (in Polish).
- 31. Speight J.G. Monomers, polymers and plastics. In: Handbook of Industrial Hydrocarbon Processes. 2nd edition. Gulf Professional Publishing, 2020, 597–649. https://doi.org/10.1016/B978-0-12-809923-0.00014-X.
- 32. Jakubowska P., Sterzyński T., Królikowski B. The properties of polyolefins modified with PET powder. J. of Applied Polymer Sci. 2008, 109(3), 1993–1999. https://doi.org/10.1002/app.27704.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8843799-d4fb-4392-9458-bb941a078f31
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.