PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tailoring of anodic surface layer properties on titanium and its implant alloys for biomedical purposes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Presentation of different anodizing methods used for formation of thin, thick, gel like covered and nanostructural titania and alloy component oxides. Evaluation of their properties for various biomedical applications in implantology and biosensing. Design/methodology/approach: Samples of titanium and its alloys were anodized in phosphoric acid solutions at different concentrations (0.5 ~ 4 M) with or without additions according to appropriate polarization regimes. Anodized samples were characterized by SED+EDS, electrochemical and impedance (EIS) tests and biocompability examination. Titanium and its alloys (Ti6Al4V and Ti6Al7Nb) samples were also used to form the nanostructural layer (nanotubes) by anodizing. The latter was used as a platform for glucose biosensing. Findings: Anodizing of titanium materials in phosphoric acid solutions allowed to obtain surface layers of various morphology and topography. They differ in porosity, thickness and chemical composition and according to their specific properties can be used in various biomedical applications. The development of gel-like layer and formation of nanotube layer was observed while anodizing in higher concentration of electrolyte or anodizing in the presence of fluorides. Both surface layers are much more bioactive than anodic barrier oxide layers on titanium. The primary tests to use nanostructured layer as platform for the third generation biosensors were promising. Practical implications: Use of medical implants covered with porous and nanostructural anodic layers tailored to particular biomedical purposes enables new practical applications in implantology and biosensing. Originality/value: Phosphate gel-like layer over surface oxide layer on titanium materials and nanostructural surface layer rich in both: phosphates and fluorides, are highly bioactive, which is the desirable property of implant materials.
Rocznik
Strony
424--431
Opis fizyczny
Bibliogr. 55 poz., rys., wykr.
Twórcy
  • University of Zielona Gora, ul. Licealna 9, 65-417 Zielona Góra, Poland
Bibliografia
  • [1] S. Trasatti, G. Lodi, Electrodes of Conductive Metallic Oxides, Chapter B, Elsevier, Amsterdam, 1981, 521.
  • [2] H. Luckey, F. Kubli, Titanium Alloys in Surgical Implants, ASTM 796, 1981.
  • [3] J. Marciniak, Biomaterials, Technical University of Silesia Press, 2002 (in Polish).
  • [4] W. Chrzanowski, J. Szewczenko, J. Tyrlik-Held, J. Marciniak, J. Zak, Influence of the anodic oxidation on the physicochemical properties of the Ti6Al4V ELI alloy, Journal of Materials Processing Technology162-163 (2005) 163-168.
  • [5] T. Hanawa, O. Mamoru, Calcium phosphate naturally formed on titanium in electrolyte solution, Biomaterials 12 (1991) 767.
  • [6] S.L. de Assis, S. Wolynec, I. Costa, Corrosion characterization of titanium alloys by electrochemical techniques, Electrochimica Acta 51 (2006) 1815-1819.
  • [7] E. Krasicka-Cydzik, K. Kowalski, I. Głazowska, Bioactive surface layers formed electrochemically on titanium materials in phosphoric acid solution, Proceedings of the 3rd Central European Conference “Chemistry Towards Biology” CHTB 2006, Cracow, 2006.
  • [8] Y.T. Sul, The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant, Biomaterials 24 (2003) 3893-3907.
  • [9] J. Bylica, J. Sieniawski, Titanium and its alloy, PWN, Warsaw, 1985.
  • [10] D.E.C. Corbridge, Phosphorus, Fifth Edition, Elsevier, Amsterdam-Lausanne-New York-Oxford–Shannon-Tokyo, 1995.
  • [11] E. Krasicka-Cydzik, Formation of thin anodic layers on titanium and its implant alloys, University of Zielona Gora Press, Zielona Góra, 2003.
  • [12] E. Krasicka-Cydzik, Electrochemical and corrosion properties of Ti6Al4V in phosphoric acid solutions, Biomaterials Engineering 7-8 (1999) 26-32.
  • [13] E. Krasicka-Cydzik, Electrochemical aspects of tailoring anodic layer properties on titanium alloys, Corrosion Protection XLII (1999) 48-52.
  • [14] E. Krasicka-Cydzik, Influence of phosphoric acid concentation on the rate of titanium alloys anodizing, Archives BM and Aut. 20/1 (2000) 155-162.
  • [15] E. Krasicka-Cydzik, Impedance properties of anodic films formed in H3PO4 on selected titanium alloys, Materials Engineering 7/2 (2000) 5-11.
  • [16] E. Krasicka-Cydzik, Effect of polarization parameters on the selected properties of surface layer on Ti6Al4V alloy anodized in phosphoric acid solutions, Archives TM and Aut. 21/1 (2001) 171-178.
  • [17] E. Krasicka-Cydzik, Impedance examination of titanium and its selected implant alloys, Biomaterials Engineering 14 (2001) 27-31.
  • [18] E. Krasicka-Cydzik, Formation and properties of anodic film on titanium in phosphoric acid solutions, Materials Engineering 9/2 (2002) 9-16.
  • [19] E. Krasicka-Cydzik, Passivity of implant titanium alloys in phosphoric acid solution of high concentration, Corrosion Protection (2002) 282-287.
  • [20] E. Krasicka-Cydzik Surface modification of phosphoric acid anodized implant titanium alloys, Proceedings of the 7th World Biomaterials Congress, Sydney, Australia, 2004.
  • [21] E. Krasicka-Cydzik, I. Głazowska, M. Michalski, Bioactivity of implant titanium alloys after anodizing in H3PO4, Biomaterials Engineering 38-42 (2004) 57-59.
  • [22] E. Krasicka-Cydzik, Method of anodic coating formation on titanium and its alloys, Polish Patent RP 185176, University of Technology Zielona Gora, LfC Ltd., 2003.
  • [23] I. Głazowska, E. Krasicka-Cydzik, Impedance characteristics of anodized titanium in vitro, Biomaterials Engineering 47-53 (2005) 127-130.
  • [24] E. Krasicka-Cydzik, I. Głazowska, M. Michalski, Microscopic examination of anodic layers on implant titanium alloys after immersion in SBF solution, Biomaterials Engineering 47-53 (2005) 130-133.
  • [25] E. Krasicka-Cydzik, K. Kowalski, I. Głazowska, Electrochemical formation of bioactive surface layer on titanium, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 147-150.
  • [26] E. Krasicka-Cydzik, I. Głazowska, Influence of alloying elements on behavior of anodic layer in phosphoric acid solution, Biomaterials Engineering 67-68 (2007) 29-31
  • [27] E. Krasicka-Cydzik, I. Głazowska, M. Michalski, Hydroxyapatite coatings on titanium and its alloys anodised in H3PO4, Proceedings European Congress on Advanced Materials and Processes, EUROMAT 2005, Prague, Czech Republic, 2005.
  • [28] E. Krasicka-Cydzik, Gel-like layer development during formation of thin anodic films on titanium in phosphoric acid solutions, Corrosion Science 46 (2004) 2487-2502.
  • [29] E. Krasicka-Cydzik, Studies on transition of titanium from active into passive state in phosphoric acid solutions, in: Passivation of metals and semiconductors, and properties of thin oxide layers, ed. P. Marcus, V. Maurice - Amsterdam: Elsevier, 2006, 193-198.
  • [30] E. Krasicka-Cydzik, Method of phosphate layer formation on titanium and its alloys, Polish Patent, PL 203453, University of Zielona Gora, 2009.
  • [31] C.A. Grimes, G.K. Mor, TiO2 Nanotube Arrays, Springer 2009.
  • [32] D.V. Bavykin, F.C. Walsh, Titanate and Titania Nanotubes, RSC Publishing, 2010.
  • [33] A. Ghicov, H. Tsuchiya, J.M. Macak, P. Schmuki, Titanium oxide nanotubes prepared in phosphate electrolytes, Electrochemistry Communications 7 (2005) 505-509.
  • [34] H. Tsuchiya, J.M. Macak, L. Taveira, E. Balaur, A. Ghicov, K. Sirotna, P. Schmuki, Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes, Electrochemistry Communications 7 (2005) 576-580.
  • [35] H. Tsuchiya, J.M. Macak, L. Taveira, P. Schmuki, Fabrication and characterization of smooth high aspect ratio zirconia nanotubes, Chemical Physics Letters 410 (2005) 188-191.
  • [36] J. Zhao, X. Wang, R. Chen, L. Li, Synthesis of thin films of barium titanate and barium strontium titanate nanotubes on titanium substrates, Materials Letters 59 (2005) 2329-2332.
  • [37] E. Krasicka-Cydzik, I. Głazowska, A. Kaczmarek, K. Białas-Heltowski, Influence of floride ions concentration on growth of anodic sel-aligned layer of TiO2 nanotubes, Biomaterials Engineering 77-80 (2008) 46-48.
  • [38] E. Krasicka-Cydzik, I. Głazowska, A. Kaczmarek, K. Białas-Heltowski, Influence of scan rate on formation of anodic TiO2 nanotubes, Biomaterials Engineering 77-80 (2008) 48-51.
  • [39] E. Krasicka-Cydzik, K. Kowalski, A. Kaczmarek, Anodic and nanostructural layers on titanium and its alloys for medical applications, Materials Engineering 5 (2009) 132.
  • [40] E. Krasicka-Cydzik, I. Głazowska, A. Kaczmarek, T. Klekiel, K. Kowalski, Nanostructural \oxide layer formed by anodizing on titanium and its implant alloy with niobium, Biomaterials Engineering 85 (2009) 325.
  • [41] E. Krasicka-Cydzik, K. Kowalski, A. Kaczmarek, I. Glazowska, K. Bialas Heltowski, Competition between phosphates and fluorides at anodic formation of titania nanotubes on titanium, Surface and Interface Analysis 42/6-7 (2010) 471-474.
  • [42] A. Kaczmarek, T. Klekiel, E. Krasicka-Cydzik, Fluoride concentration effect on the anodic growth of self aligned oxide nanotube array on Ti6Al7Nb alloy, Surface and Interface Analysis 42/6-7 (2010) 510-514.
  • [43] M. Machnik, I. Głazowska, E. Krasicka-Cydzik, Investigation for Ti/TiO2 electrode used as a platform for H2O2 biosensing, Materials Engineering 5 (2009) 363-365.
  • [44] J. Łoin, A. Kaczmarek, E. Krasicka-Cydzik, Attempt to elaborate platform of the IIIrd generation biosensor for H2O2on the surface of Ti covered with titania nanotubes, Biomedical Engineering 16/2 (2010) 54-56.
  • [45] J.R. Goldberg, J.L. Gilbert, The electrochemical and mechanical behavior of passivated and TiN/AlN-coated CoCrMo and Ti6Al4V alloys, Biomaterials 25 (2004) 851-864.
  • [46] Ch. Leinenbach, D. Eifler, Fatigue and cyclic deformation behaviour of surface-modified titanium alloys in simulated physiological media, Biomaterials 27 (2006) 1200.
  • [47] D. Krupa, J. Baszkiewicz, J.W. Sobczak, A. Bilinski, A. Barcz, Modifying the properties of titanium surface with the aim of improving its bioactivity and corrosion resistance, Journal of Materials Processing Technology 143-144 (2003) 158-163.
  • [48] A. Kierzkowska, M. Malinowski, E. Krasicka-Cydzik, Characteristics of anodic layer on Ti6Al4V ELI alloy after bending; International Journal of Computational Materials Science and Surface Engineering 1/3 (2007) 320-334.
  • [49] E. Krasicka-Cydzik, A. Kierzkowska, The effect of bending on the electrochemical behaviour of Ti6Al4V alloy in vitro, Biomaterials Engineering 37 (2004) 53-56.
  • [50] A. Kierzkowska, E. Krasicka-Cydzik, Behaviour of Ti6Al4V implant alloy in vitro after plastic deformation by bending, Surface and Interface Analysis 40/3-4 (2008) 507.
  • [51] A. Kierzkowska, E. Krasicka-Cydzik, Electrochemical characteristics of mechanically deformed oxide layer on the Ti6A14V ELI alloy, Advances in Materials Science 7/4 (2007) 26-33.
  • [52] A. Kierzkowska, M. Malinowski, E. Krasicka-Cydzik, Effect of bending on anodized Ti6Al4V alloy - surface layers characteristics, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 139-142.
  • [53] E. Krasicka-Cydzik, A. Kierzkowska, I. Głazowska, Effect of bending on anodized Ti6Al4V alloy: II. Behavior in vitro, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 89-92.
  • [54] E. Krasicka-Cydzik, A. Kierzkowska, Evaluation of the risk of hydrogen absorption in the anodic layer of the Ti6AL4V deformed by bending, Biomaterials Engineering 58-60 (2006) 140-142.
  • [55] A. Kierzkowska, E. Krasicka-Cydzik, Application of electrochemical tests for the estimation of the influence of bendig on properties of surface anodic layer on the Ti6Al4V alloy, International Review of Mechanical Engineering 9 (2005) 215-217.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e875aa7f-4a85-4e5a-8181-f03c1e69ab2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.