PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of the method FMEA for hazard identification and risk assessment in a coal mine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the basic stages of mining operations is development work. During them there can occur the events that affect the process of development work as well as the safety of workers. This article conducts a process risk assessment using the Failure Modes and Effects Analysis (FMEA) method to identify events that disrupt the development work process, along with the causes of the occurrence of these events. The study covered the process of development work i.e. the execution of the M-2 roadway in seam 502/1 realized at a depth of about 550 m with an assumed length of about 500 m. As a result of the study, those risks for which countermeasures should be applied were identified, and measures were proposed to minimize the risks involved. As part of the research, an FMEA evaluation form was created to assess process risks in the execution of similar work. The highest process risk was identified for the drivage of the excavation with a road header, and is related to the possibility of frequent failure of hydraulic systems. Similar process risk results were obtained for the risk associated with improper execution of mining with explosives and the need to perform additional blasting work in the excavated roadway. The results can contribute to reducing the time of coal face stoppage during development work, and thus improve the process of them and reduce the costs incurred during this process.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
332--342
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Silesian University of Technology Faculty of Mining, Safety Engineering and Industrial Automation
  • Polish Mining Group Joint-Stock Company KWK ROW Ruch Jankowice
Bibliografia
  • [1] N. Szlązak and J. Swolkień. “Wpływ zagrożeń naturalnych na bezpieczeństwo prowadzenia robót w kopalniach podziemnych”, Systemy Wspomagania w Inżynierii Produkcji, vol. Vol. 8, iss. 1, May. 2019.
  • [2] V.Yu. Dovhal. “Investigation of the manifestations of rock pressure in a deep mine with a steep occurrence of coal seams”, Labour protection problems in Ukraine, vol. 37, no. 2, Jun.2021, doi: 10.36804/nndipbop.37-2.2021. pp. 44-50.
  • [3] W. Biały. New devices used in determining and assessing mechanical characteristics of coal. 13th SGEM GeoConference on Science and Technologies In Geology, Exploration and Mining, SGEM2013 Conference Proceedings, June 16- 22, 2013, Vol. 1, BULGARIA ISBN 978-954-91818-7-6/ISSN 1314-2704. pp. 547-554.
  • [4] W. Biały. Coal cutting force measurment systems – (CCFM). 14th SGEM GeoConference on Science and Technologies In Geology, Exploration and Mining, SGEM2014 Conference Proceed-ings, June 17-26, 2014, Vol. III, BULGARIA ISBN 978-619-7105-09-4/ISSN 1314-2704. pp. 91- 98.
  • [5] W. Biały. Application of quality management tools for evalu-ating the failure frequency of cutter-loader and plough mining systems. Archives of Minning Sciences, Volume 62, issue 2, 2017. pp. 243-252. ISSN 0860-7001. doi: 10.1515/amsc-2017-0018
  • [6] W. Biały, J. Fries. Computer Systems Supporting the Management of Machines/Equipment in Hard Coal Mines. Case Study. Management Systems in Production Engineering 3(27)/2019. ISSN 2299-0461. pp. 138-143. doi: 10.1515/mspe-2019-0022
  • [7] W. Biały, W. Grebski, G. Galecki, W. Kaniak. Environmental Impact of The Mechanical Coal Processing Plant. Acta Montanastica Slovaca. Volume 25, Issue 2. 2020. pp. 139- 149. doi: 10.46544/AMS.v25i2.1
  • [8] H. Badura, Z. Łukaszczyk, “Zarządzanie zagrożeniem metanowym w kopalniach węgla kamiennego’, Systemy Wspomagania w Inżynierii Produkcji”, vol. 6, iss. 7, pp. 33-44. Jun. 2017.
  • [9] E. Krause, A. Smoliński, “Analysis and assessment of parameters shaping methane hazard in longwall areas”, Journal of Sustainable Mining, vol. 12, no. 1, pp. 13-19, Apr. 2013.
  • [10] J. Brodny, D. Felka, M. Tutak, “The use of the neuro-fuzzy model to predict the methane hazard during the underground coal mining production process”, J Clean Prod, vol. 368, Sep. 2022, doi: 10.1016/j.jclepro.2022.133258.
  • [11] W.P. Diamond, “Methane Control for Underground Coal Mines”, in Hydrocarbons from Coal, 2021. doi: 10.1306/st38577c11.
  • [12] W. Dziurzyński, A. Krach, J. Krawczyk, T. Pałka, “Numerical simulation of shearer operation in a Longwall District”, Energies (Basel), vol. 13, no. 21, Oct. 2020, doi: 10.3390/en13215559.
  • [13] B.B. Beamish, P.J. Crosdale, “Instantaneous outbursts in underground coal mines: An overview and association with coal type”, Int J Coal Geol, vol. 35, no. 1-4, pp. 27-55, Feb. 1998, doi: 10.1016/S0166-5162(97)00036-0.
  • [14] M.B. Díaz Aguado, C. González Nicieza, “Control and prevention of gas outbursts in coal mines, Riosa-Olloniego coalfield, Spain”, Int J Coal Geol, vol. 69, no. 4, pp. 253-266, Mar. 2007, doi: 10.1016/J.COAL.2006.05.004.
  • [15] J. Zhu et al., “Risk Assessment of Deep Coal and Gas Outbursts Based on IQPSO-SVM’, International Journal of Environmental Research and Public Health 2022”, vol. 19, p. 12869, Oct. 2022, doi: 10.3390/IJERPH191912869.
  • [16] D. Rudakov, V. Sobolev, “A mathematical model of gas flow during coal outburst initiation”, Int J Min Sci Technol, vol. 29, no. 5, pp. 791-796, Sep. 2019, doi: 10.1016/J.IJMST.2019.02.002.
  • [17] L.M. Dou, X.Q. He, H. He, J. He, J. Fan, “Spatial structure evolution of overlying strata and inducing mechanism of rockburst in coal mine”, Transactions of Nonferrous Metals Society of China (English Edition), vol. 24, no. 4, pp. 1255- 1261, Apr. 2014, doi: 10.1016/S1003-6326(14)63187-3.
  • [18] C.P. Lu et al., “Microseismic frequency-spectrum evolutionary rule of rockburst triggered by roof fall”, International Journal of Rock Mechanics and Mining Sciences, vol. 64, pp. 6-16, Dec. 2013, doi: 10.1016/J.IJRMMS.2013.08.022.
  • [19] L.M. Dou, C.P. Lu, Z.L. Mu, M.S. Gao, “Prevention and forecasting of rock burst hazards in coal mines”, Mining Science and Technology (China), vol. 19, no. 5, pp. 585-591, Sep. 2009, doi: 10.1016/S1674-5264(09)60109-5.
  • [20] Y. Xue, F. Gao, T. Teng, Y. Xing, “Effect of Gas Pressure on Rock Burst Proneness Indexes and Energy Dissipation of Coal Samples”, Geotechnical and Geological Engineering, vol. 34, no. 6, pp. 1737-1748, Dec. 2016, doi: 10.1007/S10706-016-9985-X.
  • [21] P. Bańka, A. Chmiela, M. Menéndez Fernández, Z. Fernández Muñiz, A. Bernardo Sanchez, “Predicting changes in induced seismicity on the basis of estimated rock mass energy states”, International Journal of Rock Mechanics and Mining Sciences, vol. 95, pp. 79-86, May 2017, doi: 10.1016/j.ijrmms.2017.03.010.
  • [22] Y. Hu, W. Li, Q. Wang, X. Chen, and G. Zheng, “Evaluation Method of Water Hazard Control Effect of Coal Seam Floor in Deep Mining: Sequence Verification Evaluation”, Geofluids, vol. 2022, Oct, 2022, doi: 10.1155/2022/6728045.
  • [23] Z. Sun, W. Bao, M. Li, “Comprehensive Water Inrush Risk Assessment Method for Coal Seam Roof”, Sustainability (Switzerland), vol. 14, no. 17, Aug. 2022, doi: 10.3390/su141710475.
  • [24] D. Ma, H. Duan, X. Cai, Z. Li, Q. Li, Q. Zhang, “A global optimization-based method for the prediction of water inrush hazard from mining floor”, Water (Switzerland), vol. 10, no. 11, Nov. 2018, doi: 10.3390/w10111618.
  • [25] G. Fidalgo Valverde, A. Duda, F.J. Iglesias Rodríguez, A. Frejowski, I. Todorov, “Groundwater risk assessment in the context of an underground coal mine closure and an economic evaluation of proposed treatments: A case study”, Energies (Basel), vol. 14, no. 6, Mar. 2021, doi: 10.3390/en14061671.
  • [26] A. Duda, “Identification of hazardous activities during works associated with driving roadways with esplosives and analysis of the accident which occurred during the works”, Modern mining – selected issues, pp. 13-26, May 2019.
  • [27] A. Duda, “Use of selected methods for investigating events to identify and analyse their causes|, Mining – prospects and threats : Coal – cheap, clean energy and workplaces, art. 012004 pp. 1-9, May 2018.
  • [28] M. Wyganowska, K. Tobór-Osadnik, “Analysis of mining accident levels against the background of changes in productivity and employment in the hard coal mining industry”, Inżynieria Mineralna, vol. 1, no. 1 (49), pp. 117-121, Mar. 2022, doi: 10.29227/IM-2022-01-14.
  • [29] S. Shariati, “Underground mine risk assessment by using FMEA in the presence of uncertainty”, Decision Science Letters, vol. 3, no. 3, pp. 295-304, Apr. 2014, doi: 10.5267/J.DSL.2014.4.002.
  • [30] A. Esmailzadeh et al., “Risk Assessment in Quarries using Failure Modes and Effects Analysis Method (Case study: West-Azerbaijan Mines)”, Journal of Mining and Environment, vol. 13, no. 3, pp. 715-725, Jul. 2022, doi: 10.22044/JME.2022.12117.2209.
  • [31] A.A. Ordin, A.M. Nikol’Sky, A.A. Metel’Kov, “Modeling and optimization of preparatory work and stoping in a coal mine panel”, Journal of Mining Science, vol. 49, no. 6, pp. 941-949, May 2013, doi: 10.1134/S1062739149060142/METRICS.
  • [32] X. Wang, H. Wang, “Risk assessment of coal mine safety production management activities based on FMEA-BN”, Journal of Computational Methods in Sciences and Engineering, vol. 22, no. 1, Jan. 2022, doi: 10.3233/JCM-215609.
  • [33] M.J. Rahimdel, A. Aryafar, S. Vaziri, “Fuzzy FMEA for the safety risk analysis of underground coal mining (a case study in Iran)”, Mining Technology: Transactions of the Institute of Mining and Metallurgy, vol. 131, no. 2, Mar. 2022, doi: 10.1080/25726668.2022.2051273.
  • [34] A. Krzemień, A. Duda, and A. Koteras, “Wykorzystanie metody FMEA do oceny ryzyka procesowego na etapie projektowania instalacji zgazowania węgla w czynnej kopalni węgla kamiennego”, Zagrożenia i technologie, pp. 198- 205, 2012.
  • [35] A.P. Subriadi and N.F. Najwa, ‘The consistency analysis of failure mode and effect analysis (FMEA) in information technology risk assessment’, Heliyon, vol. 6, no. 1, Jan. 2020, doi: 10.1016/j.heliyon.2020.e03161.
  • [36] A. Kumar, M.P. Poonia, U. Pandel, and A.S. Jethoo, “FMEA: Methodology, Design and Implementation in a Foundry”, International Journal of Engineering Science and Technology, vol. 3, no. 6, pp. 5288-5297, 2011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e872e1f1-a7bb-434e-91fe-268a23f38ea3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.