PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Analysis of Mechanical Properties of WC-based Cermet Coatings Sprayed by HVOF onto AZ31 Magnesium Alloy Substrates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Magnesium alloys are very interesting engineering materials due to their very high strength to density ratio (the best among metallic alloys). However, because of low hardness as well as low resistance against erosion, abrasion and corrosion, their applications in the industry is very limited. In order to improve mechanical performances, deposition of hardening coating by thermal spraying was proposed. In this work, the WC-based coatings with different binder (Co or Ni) and co-hardening additives (Cr or Cr3C2) manufactured by high velocity oxy-fuel (HVOF) were studied. These coatings were deposited onto AZ31 magnesium alloy. The crucial problem is obtaining good-adhered coating without damage the substrate, because of relatively low temperature resistance of magnesium alloys (about 300 °C). To solve this problem, HVOF method, which is low temperature and high velocity, was proposed. Also an important role plays process parameters (e.g. spray distance, fuel medium, type of nozzle). The goal of the study was to compare three types of cermet coatings manufactured from commercially available powders (WC-Co, WC-Co-Cr and WC-Cr3C2-Ni) in terms of their microstructure features, microhardness, instrumented indentation and fracture toughness. Results revealed that selected process parameters made it possible to obtain well-adhered coating with good fulfillment of the surface unevenness of the AZ31 substrate. The most noticeable effect was influence of cobalt matrix on higher hardness (1.4 – 1.6 GPa) and Young modulus (330 – 340 GPa) of deposited coatings in compare to the nickel matrix ones (1.2 GPa and 305 GPa, respectively). The same trend was observed in case of fracture toughness, c.a. 6.5 MPa·m1/2 for Co-matrix and 4.9 MPa·m1/2 for Ni-matrix
Twórcy
autor
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego St. 18a, 44-100 Gliwice, Poland
  • Department of Metal Forming, Welding and Metrology, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza St. 5, 50-371 Wroclaw, Poland
Bibliografia
  • 1. Pawłowski L. The Science and Engineering of Thermal Spray Coatings. Second Edition; 2008.
  • 2. Geaman V., Pop M.A., Motoc D.L., Radomir I. Tribological properties of thermal spray coatings. European Scientific Journal. 2014; 3: 154–159.
  • 3. Ozkan D., Yilmaz M.A., Szala M., Turkuz C., Chocyk D., Tunc C., Goz O., Walczak M., Pasierbiewicz K., Yagci M.B. Effects of ceramic-based CrN, TiN, and AlCrN interlayers on wear and friction behaviors of AlTiSiN+TiSiN PVD coatings. Ceramic International. 2021; (In press).
  • 4. Fauchais P., Heberlein J.V.R., Boulos M.I. Thermal Spray Fundamentals, From Powder to Part,. Springer; 2014.
  • 5. Walczak M., Pasierbiewicz K., Szala M., Adhesion and mechanical properties of TiAlN and Altin magnetron sputtered coatings deposited on the DMSL titanium alloy substrate. Acta Physica Polonica A. 2019; 136(2): 294-298.
  • 6. Sobolev V.V., Guilemany J.M. and Nutting J. High Velocity Oxy-Fuel Spraying. Theory, StructureProperty Relationships and Applications; 2004.
  • 7. Formanek B., Szymański K., Kuczowitz B. Coatings resistant to corrosion and abrasive wear obtained by thermal spraying methods. Corrosion protection. 2010; 53(3):164-168.
  • 8. Oksa M., Turunen E., Suhonen T., Varis T. and Hannula S.-P. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications. Coatings. 2011; 1, 17-52.
  • 9. Karaoglanli A.C., Oge M., Doleker K.M., Hotamis M. Comparison of tribological properties of HVOF sprayed coatings with different composition. Surface & Coatings Technology. 2017; 318(25): 299-308.
  • 10. Żórawski W. Properties of plasma and HVOF sprayed Coatings. Tribologia. 2010; 6: 319-327.
  • 11. Łatka L., Pawłowski L., Winnicki M., Sokołowski P., Małachowska A., Kozerski S., Review of functionally graded thermal sprayed coatings. Applied Sciences. 2020; 10(15): 5153.
  • 12. Nahvi S.M., Jafari M. Microstructural and mechanical properties of advanced HVOF-sprayed WC-based cermet Coatings. Surface and Coatings Technology. 2016; 286: 95-102.
  • 13. Sendrowski C., Bojar Z., Szymański K., Formanek B. The structure and properties investigations of multilayer NiAl/FeAl and NiCr/FeAl Coatings obtained by HVOF spraying. Material Engineering. 2008; 6:611-614.
  • 14. Wang H., Qiu Q., Gee M., Hou Ch., Liu X., Song X. Wear resistance enhancement of HVOF-sprayed WC-Co coating by complete densification of starting powder. Materials and design. 2020; 191: 108586.
  • 15. Myalska H., Lusvarghi L., Bolelli G., Sassatelli P., Moskal G. Tribological behavior of WC-Co HVAF-sprayed composite coatings modified by nano-sized TiC addition. Surface and Coatings Technology. 2019; 371: 401–416.
  • 16. Yao H.L., Yang Ch., Yi D.-L., Zhang M.-X., Wang H.-T., Chen Q.-Y., Bai X.-B., Ji G.-Ch. Microstructure and mechanical property of high velocity oxyfuel sprayed WC-Cr3C2-Ni Coatings. Surface and Coatings Technology. 2020; 397: 126010.
  • 17. Bhosale G.D, Prabhu T.R., Walmik S.R., Manik A.P., Rukhande W.S. High temperature solid particle erosion behaviour of SS 316L and thermal sprayed WC-Cr3C2–Ni Coatings. Wear. 2020; 462463:203520.
  • 18. Mayrhofer E., Janka L., Mayr W. P., Norpoth J., Ripoll M. R., Gröschl M. Cracking resistance of Cr3C2–NiCr and WC–Cr3C2–Ni thermally sprayed coatings under tensile bending stress. Surface & Coatings Technology. 2015; 281: 169-175.
  • 19. Ishikawa Y., Kuroda S., Kawakita J., Sakamoto Y., Takaya M. Sliding wear properties of HVOF sprayed WC–20%Cr3C2–7%Ni cermet coatings. Surface & Coatings Technology. 2007; 201: 4718–4727.
  • 20. García-Rodríguez S., López A. J., Bonache Victoria., Torres B. and Rams J. Fabrication, Wear, and Corrosion Resistance of HVOF Sprayed WC-12Co on ZE41 Magnesium Alloy. Coatings. 2020; 10 (502): doi:10.3390/coatings10050502.
  • 21. Lee Seoung. S. Wear Behaviors of WC-CoCr and WC-CrC-Ni Coatings Sprayed by HVOF. Journal of the Korea Academia-Industrial cooperation Society. 2020; 21(6): 204-211.
  • 22. Tillmann W., Hagen L., Schaak C., Liß J., Schaper M., Hoyer K.-P., Aydinöz M. E., Garthe K.-U. Adhesion of HVOF-Sprayed WC-Co Coatings on 316L Substrates Processed by SLM. Journal of Thermal Spraying Technology. 2020; 29: 1396–1409.
  • 23. Hong S., Wu Y. P., Gao W.W., Wang B., Guo W.M. and Lin J. R. Microstructural characterisation and microhardness distribution of HVOF sprayed WC– 10Co–4Cr coating. Surface Engineering. 2014; 30(1): 53-58.
  • 24. Méndez-Medrano K.O., Martínez-González C. J., Alvarado-Hernández F., Jiménez O., BaltazarHernández V.H, Ruiz-Luna H. Microstructure and Properties Characterization of WC-Co-Cr Thermal Spray Coatings. Journal of Minerals and Materials Characterization and Engineering. 2018; 6: 482-497.
  • 25. Mazaheri Y., Jalilvand M.M., Heidarpour A., Jahani A.R. Tribological behavior of AZ31/ZrO2 surface nanocomposites developed by friction stir processing. Tribology International.2020; 143: 106062
  • 26. Fouad, Y.; El Batanouny, M. Effect of surface treatment on wear behavior of magnesium alloy AZ31. Alexandria Engineering Journal. 2011; 50: 19–22.
  • 27. Chang L.L., Wang Y.N., Zhao X., Huang J.C., Microstructure and mechanical properties in an AZ31 magnesium alloy sheet fabricated by asymmetric hot extrusion. Materals Science Engineering A. 2008; 496: 512–516
  • 28. Myalska H., Dybowski B., Moskal G. WC-Co coatings and sinters modified with nano-sized TiC microstructure – quantitative evaluation. Advances in Science and Technology Research Journal. 2017; 11(1): 220-231.
  • 29. Szala M., Walczak M., Łatka L., Gancarczyk K., Özkan D. Cavitation erosion and sliding wear of MCrAlY and NiCrMo coatings deposited by HVOF thermal spraying. advances in materials science. 2020; 20/2(64): 26-38.
  • 30. Abbas M., Smith G. M., Munroe P. R. Microstructural Characterization of HVOF-Sprayed Nion Polished and Oxidized Stainless Steel Substrates. Journal of Thermal Spraying Technology. 2020; 29: 1093–1110.
  • 31. Oliver W.C. and Pharr G.M. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. Journal Materials Research. 1992; 7(06): 1564-1583.
  • 32. Chicot D. and Tricoteaux A. Mechanical Properties of Ceramic by Indentation: Principle and Applications, Ceramic Materials. Wilfried Wunderlich (Ed.); 2010, InTech.
  • 33. Houdková Š., Kašparová M. Experimental study of indentation fracture toughness in HVOF sprayed hardmetal coatings. Engineering Fracture Mechanics. 2013; 110: 468–476.
  • 34. Luiz L.A., de Andrade J., Pesqueira C.M. et al. Corrosion Behavior and Galvanic Corrosion Resistance of WC and Cr3C2 Cermet Coatings in Madeira River Water. Jornal of Thermal Spraying Technology.2021; 30: 205–221.
  • 35. Song B., Murray J.W., Wellman R.G., Pala Z., Hussain T. Dry sliding wear behaviour of HVOF thermal sprayed WC-Co-Cr and WC-CrxCy-Ni coatings. Wear. 2020; 442-443.
  • 36. Qiao L., Wu Y., Hong S., Long W. ,Cheng J. Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying. Ceramic International. 2021; 47: 1829–1836.
  • 37. Zhan S.-H., Cho T.-Y., Yoon J.-H., Li M.-X., Shum P.W., Kwon S.-C. Investigation on microstructure, surface properties and anti-wear performance of HVOF sprayed WC-Cr-Ni coatings modified by laser heat treatment. Material Science Engineering B. 2009; 162: 127–134.
  • 38. Sidhu H.S., Sidhu B.S., Prakash S. Mechanical and microstructural properties of HVOF sprayed WC-Co and Cr3C2-NiCr coatings on the boiler tube steels using LPG as the fuel gas. Journal Materials Processing Technology. 2006; 171: 77–82.
  • 39. Houdkova S., Blahova O., Zahalka F., Kasparova M. The instrumented indentation study of HVOFsprayed hardmetal coatings. Journal of Thermal Spray Technology. 2012; 21(1): 77-85.
  • 40. Bolelli G., Berger L.-M., Bonetti M., Lusvarghi L. Comparative study of the dry sliding wear behaviour of HVOF-sprayed WC–(W,Cr)2C–Ni and WC–CoCr hard metal coatings. Wear. 2014; (309): 96-111.
  • 41. Culha O., Toparli M., Celik E., Aksoy T., Soykan H.S. Indentation size effect on mechanical properties of HVOF sprayed WC based cermet coatings for a roller cylinder. Surface and Coatings Technology. 2009; (203): 2052-2057.
  • 42. Matikainena V., Peregrina S.R., Ojala N., Koivuluoto H., Schubert J., Houdková Š., Vuoristo P. Erosion wear performance of WC-10Co4Cr and Cr3C2-25NiCr coatings sprayed with high-velocity thermal spray processes. Surface Coatings & Technology. 2019; 370: 196–212.
  • 43. Vashishtha N., Khatirkar R.K., Sapate S.G. Tribological behaviour of HVOF sprayed WC-12Co, WC-10Co-4Cr and Cr3C2−25NiCr coatings. Tribology International. 2017; (105): 55-68.
  • 44. Yao H.-L., Yang C., Yi D.-L., Zhang M.-X., Wang H.-T., Chen Q.-Y., Bai X.-B., Ji G.-C. Microstructure and mechanical property of high velocity oxyfuel sprayed WC-Cr3C2-Ni coatings. Surface Coatings & Technology. 2020; 397: 126010.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e87205c4-1def-4fa9-83cd-e8aa697131e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.