PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rigorous optical modelling of long-wavelength infrared photodetector with 2D subwavelength hole array in gold film

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The quantum efficiency of an InAs/InAsSb type-II superlattice (T2SL) high operating temperature (HOT) long-wavelength infrared (LWIR) photodetector may be significantly improved by integrating a two-dimensional subwavelength hole array in a metallic film (2DSHA) with the detector heterostructure. The role of the metallic grating is to couple incident radiation into surface plasmon polariton (SPP) modes whose field overlaps the absorber region. Plasmon-enhanced infrared photodetectors have been recently demonstrated and are the subject of intensive research. Optical modelling of the three-dimensional detector structure with subwavelength metallic components is challenging, especially since its operation depends on evanescent wave coupling. Our modelling approach combines the 3D finite-difference time-domain method (FDTD) and the rigorous coupled wave analysis (RCWA) with a proposed adaptive data-point selection for calculation time reduction. We demonstrate that the 2DSHA-based detector supports SPPs in the Sommerfeld-Zenneck regime and waveguide modes that both enhance absorption in the active layer.
Rocznik
Strony
art. no. e148831
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • VIGO Photonics, Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
  • Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
  • Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
autor
  • Institute of Physics, Lodz University of Technology, Wólczańska 217/221, 93-005 Łódź, Poland
autor
  • Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
autor
  • Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
  • VIGO Photonics, Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
  • VIGO Photonics, Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
  • Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
Bibliografia
  • [1] Piotrowski, J. & Rogalski, A. High-operating-temperature infrared photodetectors (SPIE, Bellingham, 2007). https://doi.org/10.1117/3.717228.
  • [2] Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007). https://doi.org/10.1007/0-387-37825-1.
  • [3] Tong, J., Tobing, L. Y., Qiu, S., Zhang, D. H. & Unil Perera, A. G. Room temperature plasmon-enhanced InAs0.91Sb0.09-based heterojunction n-i-p mid-wave infrared photodetector. Appl. Phys. Lett. 113 (2018). https://doi.org/10.1063/1.5018012.
  • [4] Tong, J. C. et al. Surface plasmon enhanced infrared photodetection. Opto-Electron. Adv. 2, 1-10 (2019). https://doi.org/10.29026/oea.2019.180026.
  • [5] Nordin, L., Petluru, P., Kamboj, A., Muhowski, A. J. & Wasserman, D. Ultra-thin plasmonic detectors. Optica 8, 1545-1551 (2021). https://doi.org/10.1364/OPTICA. 438039.
  • [6] Nordin, L., Muhowski, A. J. & Wasserman, D. High operating temperature plasmonic infrared detectors. Appl. Phys. Lett. 120 (2022). https://doi.org/10.1063/5.0077456.
  • [7] Janaszek, A. et al. Plasmon-enhanced high operating temperature infrared photodetectors. In Staliūnas, K., Kuzmiak, V. & Stefaniuk, T. (eds.) Metamaterials XIV, June, 27 (SPIE, 2023). https://doi.org/10.1117/12.2665259.
  • [8] Taflove, A. & Hagness, S. Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artec House Inc., Boston, 2005).
  • [9] Moharam, M. G. & Gaylord, T. K. Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 71, 811-818 (1981). https://doi.org/10.1364/JOSA.71.000811.
  • [10] Ting, D. Z. et al. InAs/InAsSb superlattice infrared detectors. Opto-Electron. Rev. 31, 1-7 (2023). https://doi.org/10.24425/opelre.2023.144565.
  • [11] Delmas, M. et al. High performance type-II InAs/GaSb superlattice infrared photodetectors with a short cut-off wavelength. Opto-Electron. Rev. 31, 4-9 (2023). https://doi.org/10.24425/opelre.2023.144555.
  • [12] Rafol, S. B. et al. Long wavelength type-II superlattice barrier infrared detector for CubeSat hyperspectral thermal imager. Opto-Electron. Rev. 31 (2023). https://doi.org/10.24425/opelre.2023.144569.
  • [13] Ting, D. Z. et al. InAs/InAsSb Type-II Strained-Layer Superlattice Infrared Photodetectors. Micromachines 11, 958 (2020). https://doi.org/10.3390/mi11110958.
  • [14] Manyk, T. et al. Electronic band structure of InAs/InAsSb type-II superlattice for HOT LWIR detectors. Results Phys. 11, 1119-1123 (2018). https://doi.org/10.1016/j.rinp.2018.11.030.
  • [15] Polo Jr, J. A.&Lakhtakia, A. Surface electromagneticwaves: A review. Laser Photonics Rev. 5, 234-246 (2011). https:doi.org/10.1002/lpor.200900050.
  • [16] Sarkar, T. K., Abdallah, M. N., Salazar-Palma, M. & Dyab, W. M. Surface plasmons-polaritons, surface waves, and Zenneck waves: Clarification of the terms and a description of the concepts and their evolution. IEEE Trans. Antennas Propag. 59, 77-93 (2017). https://doi.org/10.1109/MAP.2017.2686079.
  • [17] Kumar, S., Selvaraja & Sethi, P. Review on optical waveguides. In Emerging Waveguide Technology (IntechOpen, Rijeka, 2018). https://doi.org/10.5772/intechopen.77150.
  • [18] Lumerical Inc., FDTD: 3D Electromagnetic Simulator.
  • [19] Photonic laser simulation kit. https://plask.app.
  • [20] Dems, M., Kotyński, R. & Panajotov, K. PlaneWave Admittance Method - a novel approach for determining the electromagnetic modes in photonic structures. Opt. Express 13, 3196 (2005). https://doi.org/10.1364/opex.13.003196.
  • [21] Dems, M. Modelling of high-contrast grating mirrors. The impact of imperfections on their performance in VCSELs. Opto-Electron. Rev. 19, 340-345 (2011). https://doi.org/10.2478/s11772-011-0027-1.
  • [22] Helfert, S. F. Numerical stable determination of Floquetmodes and the application to the computation of band structures. Opt. Quantum Electron. 36, 87-107 (2004). https://doi.org/10.1023/B:OQEL.0000015632.23175.40.
  • [23] Schlipf, J.&Fischer, I. A. Rigorous coupled-wave analysis of a multi-layered plasmonic integrated refractive index sensor. Opt. Express 29, 36201 (2021). https://doi.org/10.1364/oe.438585.
  • [24] Schlipf, J. & Fischer, I. A. Rigorous coupled-wave analysis of a multi-layered plasmonic integrated refractive index sensor: supplement (2021). Figshare https://doi.org/10.6084/m9.figshare.16666996.
  • [25] Moharam, M. G., Gaylord, T. K., Pommet, D. A. & Grann, E. B. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. J. Opt. Soc. Am. A 12, 1077 (1995). https://doi.org/10.1364/josaa.12.001077.
  • [26] David, A., Benisty, H. & Weisbuch, C. Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape. Phys. Rev. B 73, 1-7 (2006). https://doi.org/10.1103/PhysRevB.73.075107.
  • [27] Antos, R. Fourier factorization with complex polarization bases in modeling optics of discontinuous bi-periodic structures. Opt. Express 17, 7269 (2009). https://doi.org/10.1364/oe.17.007269.
  • [28] Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866-1878 (1961). http://doi.org/10.1103/PhysRev.124.1866.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e855ec02-5514-44ab-809a-f784647e2f8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.