Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Sodium metasilicate (SMS) tended to agglomerate during glycerolysis reactions in high shear compartment reactors (HSCR), hindering triacylglycerol (TAG) conversion. Therefore, the aim was to evaluate the SMS-magnesium oxide (MgO) blend as a heterogeneous catalyst for glycerolysis reactions. Various SMS-MgO ratios (ranging from 2.5:1 to 10.0:1) were evaluated. The results demonstrated that increasing MgO in the blend reduced catalyst basicity and minimized O-Si-O groups and catalyst crystallinity, preventing clumping and increasing catalyst surface area. The SMS-MgO 5.0:1 blend exhibited the smallest pore size (<2 nm) with a surface area of 4.22 m2 . g–1 and basicity of 11.59 ± 0.115 mmol . g–1. This blend achieved the highest TAG conversion of 53.98%, with a MAG content of 16.86 ± 0.528% when it was performed at 120 °C with an agitator speed of 2,000 rpm for 6 h. Thus, the SMS-MgO 5.0:1 blend shows promise as a heterogeneous catalyst in glycerolysis reaction in HSCR, hindering agglomeration and enhancing surface area.
Czasopismo
Rocznik
Tom
Strony
17--24
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wz.
Twórcy
autor
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology Universitas Gadjah Mada, Jl. Flora No 1 Bulaksumur, Yogyakarta, Indonesia
- Department of Food Technology, Universitas PGRI Semarang, Jl. Sidodadi Timur No. 24 Semarang, Indonesia
autor
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology Universitas Gadjah Mada, Jl. Flora No 1 Bulaksumur, Yogyakarta, Indonesia
autor
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology Universitas Gadjah Mada, Jl. Flora No 1 Bulaksumur, Yogyakarta, Indonesia
Bibliografia
- 1. Alvarez Serafini, M.S. & Tonetto, G.M. (2019). Catalytic Synthesis of Monoglycerides by Glycerolysis of Triglycerides. Internat. J. Chem. Reactor Engin. 17(11). DOI: 10.1515/ijcre-2019-0056.
- 2. Buchori, L., Anggoro, D.D., Sumantri, I. & Putra, R.R.R. (2019). Optimization of monoglycerides production using KF/CaO-MgO heterogeneous catalysis. Bull. Chemical Reaction Engin. Catalysis. 14(3), 689–696. DOI: 10.9767/bcrec.14.3.4251.689-696.
- 3. Zha, B., Chen, Z., Wang, L., Wang, R., Chen, Z. & Zheng, L. (2014). Production of glycerol monolaurate-enriched monoacylglycerols by lipase-catalyzed glycerolysis from coconut oil. Europ. J. Lipid Sci. Technol. 116(3), 328–335. DOI: 10.1002/ejlt.201300243.
- 4. Vilas Bôas, R.N., Lima, R., Silva, M.V.C., Freitas, L., Aguiar, L.G. & de Castro, H.F. (2021). Continuous production of monoacylglycerol via glycerolysis of babassu oil by immobilized Burkholderia cepacia lipase in a packed bed reactor. Bioproc. Biosyst. Eng. 44(10), 2205–2215. DOI: 10.1007/s00449-021-02596-6.
- 5. Arum, A., Hidayat, C. & Supriyanto. (2019). Synthesis of Emulsifier from Refined Bleached Deodorized Palm Stearin by Chemical Glycerolysis in Stirred Tank Reactor. KnE Life Sci. 4(11), 130. DOI: 10.18502/kls.v4i11.3859.
- 6. Cerro-Alarcón, M., Corma, A., Iborra, S., Martínez, C. & Sabater, M.J. (2010). Methanolysis of sunflower oil using gem-diamines as active organocatalysts for biodiesel production. Appl. Catal. A Gen. 382(1), 36–42. DOI: 10.1016/j.apcata.2010.04.024.
- 7. Laskar, I.B., Changmai, B., Gupta, R., Shi, D., Jenkinson, K.J., Wheatley, A.E.H. & Rokhum, S.L. (2021). A mesoporous polysulfonic acid-formaldehyde polymeric catalyst for biodiesel production from Jatropha curcas oil. Renew Energy. 173, 415–421. DOI: 10.1016/j.renene.2021.04.004.
- 8. Zhong, N., Li, L., Xu, X., Cheong, L.Z., Xu, Z. & Li, B. (2013). High yield of monoacylglycerols production through low-temperature chemical and enzymatic glycerolysis. Europ. J. Lipid Sci. Technol. 115(6), 684–690. DOI: 10.1002/ejlt.201200377.
- 9. Coman, S.M. & Parvulescu, V.I. Published online 2013. Heterogeneous Catalysis for Biodiesel Production. The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio--Chemicals. 93–136. DOI: 10.1016/B978-0-444-56330-9.00004-8.
- 10. Navas, M.B., Ruggera, J.F., Lick, I.D. & Casella, M.L. (2020). A sustainable process for biodiesel production using Zn/Mg oxidic species as active, selective and reusable heterogeneous catalysts. Biores. Bioprocess. 7(1). DOI: 10.1186/s40643-019-0291-3.
- 11. Lee, H.V., Juan, J.C., Yun Hin, T.Y. & Ong, H.C. (2016). Environment-friendly heterogeneous alkaline-Based mixed metal oxide catalysts for biodiesel production. Energies (Basel) 9(8). DOI: 10.3390/en9080611.
- 12. Mostafa, N.A., Maher, A. & Abdelmoez, W. (2013). Production of mono-, di-, and triglycerides from waste fatty acids through esterification with glycerol. Adv. Biosc. Biotechnol. 4(09), 900–907. DOI: 10.4236/abb.2013.49118.
- 13. Belelli, PG.G., Ferretti, CA.A., Apesteguía, CR.R., Ferullo, RM.M. & Di Cosimo, JI.I. (2015). Glycerolysis of methyl oleate on MgO: Experimental and theoretical study of the reaction selectivity. J. Catal. 323, 132–144. DOI: 10.1016/j.jcat.2015.01.001.
- 14. Wangi, I.P., Supriyanto, S., Sulistyo, H. & Hidayat, C. (2022). Sodium Silicate Catalyst for Synthesis Monoacylglycerol and Diacylglycerol-Rich Structured Lipids : Product Characteristic and Glycerolysis – Interesterification Kinetics. 17(2). DOI: 10.9767/bcrec.17.2.13306.250-262.
- 15. Ye, B., Qiu, F., Sun, C., Li, Y. & Yang, D. (2014). Bio-diesel production from soybean oil using heterogeneous solid base catalyst. J. Chem. Technol. Biotech. 89(7), 988–997. DOI: 10.1002/jctb.4190.
- 16. Prabu, M., Manikandan, M., Kandasamy, P., Kalaivani, P.R., Rajendiran, N. & Raja, T. (2019). Synthesis of Biodiesel using the Mg/Al/Zn Hydrotalcite/SBA-15 Nanocomposite Catalyst. ACS Omega. 4(2), 3500–3507. DOI: 10.1021/acsomega.8b02547.
- 17. Chen, Y.C., Lin, D.Y. & Chen, B.H. (2019). Metasilicate-based catalyst prepared from natural diatomaceous earth for biodiesel production. Renew Energy. 138, 1042–1050. DOI: 10.1016/j.renene.2019.02.054.
- 18. Nguyen-Phu, H., Park, C.-yi. & Eun, W.S. (2016). Activated red mud-supported Zn/Al oxide catalysts for catalytic conversion of glycerol to glycerol carbonate: FTIR analysis. Catal. Commun. 85(3), 52–56. DOI: 10.1016/j.catcom.2016.07.012.
- 19. Jagadeeswaraiah, K., Kumar, C.R., Prasad, P.S.S., Loridant, S. & Lingaiah, N. (2014). Synthesis of glycerol carbonate from glycerol and urea over tin-tungsten mixed oxide catalysts. Appl. Catal. A Gen. 469, 165–172. DOI: 10.1016/j.apcata.2013.09.041.
- 20. Sulistyo, H., Sediawan, W.B., Suyatmo, R.I.D. & Hartati, I. (2021). Kinetic studies of the glycerolysis of urea to glycerol carbonate in the presence of amberlyst-15 as catalyst. Bull. Chem. Reaction Engin. Catal. 16(1), 52–62. DOI: 10.9767/BCREC.16.1.8893.52-62.
- 21. Konwar, L.J., Mäki-Arvela, P., Kumar, N., et al. (2016). Selective esterification of fatty acids with glycerol to monoglycerides over –SO3H functionalized carbon catalysts. Reaction Kinet. Mech. Catal. 119(1), 121–138. DOI: 10.1007/s11144-016-1040-7.
- 22. Zhang, S., Fu, J., Xing, S., Li, M., Liu, X., Yang, L. & Lv, P. (2023). Sodium Silicates Modified Calcium Oxide as a High-Performance Solid Base Catalyst for Biodiesel Production. Catalysts. 13(4), 775. DOI: 10.3390/catal13040775.
- 23. Siregar, A.G.A., Manurung, R. & Taslim, T. (2021). Synthesis and characterization of sodium silicate produced from corncobs as a heterogeneous catalyst in biodiesel production. Indonesian J. Chem. 21(1), 88–96. DOI: 10.22146/ijc.53057.
- 24. Ferretti, C.A., Apesteguía, C.R. & Di Cosimo, J.I. (2011). MgO-based catalysts for monoglyceride synthesis from methyl oleate and glycerol: Effect of Li promotion. Appl. Catal. A Gen. 399(1–2), 146–153. DOI: 10.1016/j.apcata.2011.03.051.
- 25. Guo, F., Peng, Z.G., Dai, J.Y. & Xiu, Z.L. (2010). Calcined sodium silicate as solid base catalyst for biodiesel production. Fuel Proces. Technol. 91(3), 322–328. DOI: 10.1016/j.fuproc.2009.11.003.
- 26. Fallah Kelarijani, A., Gholipour Zanjani, N., Kamran Pirzaman, A., Kelarijani, A., Zanjani, N. & Pirzaman, A. (2020). Ultrasonic Assisted Transesterification of Rapeseed Oil to Biodiesel Using Nano Magnetic Catalysts. Waste Biomass Valorization. 11(6), 2613–2621. DOI: 10.1007/s12649-019-00593-1.
- 27. Pithani, S., Karlsson, S., Emtenäs, H. & Öberg, C.T. (2019). Using Spinchem Rotating Bed Reactor Technology for Immobilized Enzymatic Reactions: A Case Study. Org Process Res Dev. 23(9), 1926–1931. DOI: 10.1021/acs.oprd.9b00240.
- 28. de Oliveira, K.G., de Lima, R.R.S., de Longe, C., de C. Bicudo, T., Sales, R. V., de Carvalho, L.S., Oliveira, K.G. De., Lima, R.R.S. De. & Longe, C. De. (2022). Sodium and potassium silicate-based catalysts prepared using sand silica concerning biodiesel production from waste oil. Arabian J. Chem. 15(2), 103603. DOI: 10.1016/j.arabjc.2021.103603.
- 29. Brunauer, S., Emmett, P.H. & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 60(2), 309–319. DOI: 10.1021/ja01269a023.
- 30. Barrett, E.P., Joyner, L.G. & Halenda, P.P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 73(1), 373–380. DOI: 10.1021/ja01145a126.
- 31. Li, B., Li, H., Zhang, X., Fan, P., Liu, L., Li, B., Dong, W. & Zhao, B. (2019). Calcined sodium silicate as an efficient and benign heterogeneous catalyst for the transesterification of natural lecithin to L-α-glycerophosphocholine. Green Proces. Synthesis. 8(1), 78–84. DOI: 10.1515/gps-2017-0190.
- 32. AOCS. Published online 2009. AOCS Ca 5a-40 Free Fatty Acids. In: Official Methods and Recommended Practices of the American Oil Chemist’s Society. 2009. https://myaccount.aocs.org/PersonifyEbusiness/Store/Product-Details?productId=111480
- 33. Subroto, E., Wisamputri, M.F., Supriyanto., Utami, T. & Hidayat, C. (2020). Enzymatic and chemical synthesis of high mono- and diacylglycerol from palm stearin and olein blend at different type of reactor stirrers. J. Saudi Soc. Agric. Sci. 19(1), 31–36. DOI: 10.1016/j.jssas.2018.05.003.
- 34. Kılıç, B. & Özer, C.O. (2019). Potential use of inter-esterified palm kernel oil to replace animal fat in frankfurters. Meat Sci. 148(October 2018), 206–212. DOI: 10.1016/j.meatsci.2018.08.024.
- 35. Sun, Z., Duan, X., Srinivasakannan, C. & Liang, J. (2018). Preparation of magnesium silicate/carbon composite for adsorption of rhodamine B. RSC Adv. 8(14), 7873–7882. DOI: 10.1039/c7ra12848g.
- 36. Fan, F., Jia, L., Guo, X., Lu, X. & Chen, J. (2013). Preparation of novel ethylene glycol monomethyl ether fatty acid monoester biodiesel using calcined sodium silicate. Energy and Fuels. 27(9), 5215–5221. DOI: 10.1021/ef401514e.
- 37. Gliński, M., Iwanek Nee Wilczkowska, E.M., Ulkowska, U., Czajka, A. & Kaszkur, Z. (2021). Catalytic activity of high-surface-area amorphous mgo obtained from upsalite. Catalysts 11(11), 1–14. DOI: 10.3390/catal11111338.
- 38. Zahir, M.H., Rahman, M.M.M., Irshad, K. & Rahman, M.M.M. (2019). Shape-stabilized phase change materials for solar energy storage: MgO and mg(OH)2 mixed with polyethylene glycol. Nanomaterials 9(12), 1–21. DOI: 10.3390/nano9121773.
- 39. Gao, X., Asgar, H., Kuzmenko, I. & Gadikota, G. (2021). Architected mesoporous crystalline magnesium silicates with ordered pore structures. Microp. Mesop. Mater. 327,. DOI: 10.1016/j.micromeso.2021.111381.
- 40. Manríquez-Ramírez, M., Gómez, R., Hernández-Cortez, J.G., Zúñiga-Moreno, A., Reza-San Germán, C.M. & Flores-Valle, S.O. (2013). Advances in the transesterification of triglycerides to biodiesel using MgO–NaOH, MgO–KOH and MgO–CeO2 as solid basic catalysts. Catal Today. 212, 23–30. DOI: 10.1016/j.cattod.2012.11.005.
- 41. Balakrishnan, G., Velavan, R., Mujasam Batoo, K. & Raslan, E.H. (2020). Microstructure, optical and photocatalytic properties of MgO nanoparticles. Results Phys. 16(February), 103013. DOI: 10.1016/j.rinp.2020.103013.
- 42. Stefanidis, S.D., Karakoulia, S.A., Kalogiannis, K.G., Iliopoulou, E.F., Delimitis, A., Yiannoulakis, H., Zampetakis, T., Lappas, A.A. & Triantafyllidis, K.S. (2016). Natural magnesium oxide (MgO) catalysts: A cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil. Appl. Catal. B. 196, 155–173. DOI: 10.1016/j.apcatb.2016.05.031.
- 43. Singh, N., Singh, P.K., Shukla, A., Singh, S. & Tandon, P. (2016). Synthesis and Characterization of Nanostructured Magnesium Oxide: Insight from Solid-State Density Functional Theory Calculations. J. Inorg. Organomet. Polym. Mater. 26(6), 1413–1420. DOI: 10.1007/s10904-016-0411-x.
- 44. Di Cosimo, J.I., Díez, V.K., Ferretti, C. & Apesteguía, C.R. (2014). Basic catalysis on MgO: Generation, characterization and catalytic properties of active sites. Catalysis 26(3000), 1–28. DOI: 10.1039/9781782620037-00001.
- 45. Kahlenberg, V. (2010). Structural chemistry of anhydrous sodium silicates - A review. Chimia (Aarau). 64(10), 716–722. DOI: 10.2533/chimia.2010.716.
- 46. Anggoro, D.D., Buchori, L., Sasongko, S.B. & Oktavianty, H. (2019). Basicity Optimization of KF/Ca-MgO Catalyst using Impregnation Method. Bull. Chem. Reaction Engin. Catal. 14(3), 678–682. DOI: 10.9767/bcrec.14.3.4248.678-682.
- 47. Guo, F., Wei, N.N., Xiu, Z.L. & Fang, Z. (2012). Transesterification mechanism of soybean oil to biodiesel catalyzed by calcined sodium silicate. Fuel. 93, 468–472. DOI: 10.1016/j.fuel.2011.08.064.
- 48. Dijkstra, A.J. (2020). Some Thoughts on the Mechanism of Ester Interchange Reactions Involving Acylglycerols. Europ. J. Lipid Sci. Technol. 122(10), 2000188. DOI: 10.1002/ejlt.202000188.
- 49. Botti, R.F., Innocentini, M.D.M., Faleiros, T.A., Mello, M.F., Flumignan, D.L., Santos, L.K., Franchin, G. & Colombo, P. (2020). Biodiesel Processing Using Sodium and Potassium Geopolymer Powders as Heterogeneous Catalysts. Molecules 25(12). DOI: 10.3390/molecules25122839.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e84ef9c1-31b4-4aaa-8dc6-3cdc5525eaee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.