Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The lateritic deposits spread over the Eastern Ghats of Sukinda Valley, Odisha, India, produce a huge amount of overburden annually as a byproduct of chromite mining. This chromite mining overburden contains nickel, the only source of the metal in the country. During this study Aspergillus humicola SKP102, an indigenous fungus isolated from the mining overburden was employed for the leaching of nickel. About 53.89% of the nickel could be leached by the fungus when grown in batch mode using a Czapek dox medium containing 2% (w/v) of the mining overburden. The parameters affecting bioleaching were optimized in order to grow the fungus and leach the metal. Of the different options of cheap carbon sources, straw infusion and molasses emerged as viable options for the growth of the fungus and the leaching of nickel. Two-step and indirect techniques were also used for this purpose, and they resulted in 53.09% and 65.04% Ni leaching respectively. Adding diluted sulfuric acid to the leaching medium resulted in 97.05% nickel recovery from the overburden pulp. A. humicola SKP102 could be a potential tool for leaching nickel from the mining overburden.
Wydawca
Czasopismo
Rocznik
Tom
Strony
108--114
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
- Microbiology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
autor
- Microbiology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
Bibliografia
- 1. Acharya, C., Kar, R. N., & Sukla, L. B. (1998). Short communication: Leaching of chromite overburden with various native bacterial strains. World Journal of Microbiology and Biotechnology, 14, 769-771.
- 2. Acharya, C., Kar, R. N., & Sukla, L. B. (2002). Bioleaching of low grade manganese ore with Penicillium citrinum. The European Journal of Mineral Processing and Environmental Protocol, 2, 197-204.
- 3. APHA, AWWA, & WEF. (1998). Standard methods for the examination of water and waste water. 20th American Public Health Association. American Water Works Association. Water Environment Federation.
- 4. Behra, S. K., Panda, P. P., & Sukla, L. B. (2011). Microbial recovery of nickel and cobalt from pre-treated chromite overburdens of Sukinda mines using Aspergillus niger. Recent Research in Science and Technology, 3, 28-33.
- 5. Behra, S. K., Sukla, L. B., & Mishra, B. K. (2010). Leaching of nickel laterite using fungus mediated organic acid and synthetic organic acid: A comparative study. In R. Singh, A. Das, P. K. Banerjee, K. K. Bhattacharyya, & N. G. Goswami (Eds.), Proceedings of the XI International Seminar on Mineral Processing Technology (MPT-2010), NML Jamshedpur (pp. 946-954).
- 6. Biswas, S., Samanta, S., Dey, R., Mukherjee, S., & Banerjee, P. C. (2013). Microbial leaching of chromite overburden from Sukinda mines, Orissa, India using Aspergillus niger. International Journal of Mineral, Metallurgy and Materials, 20, 705-712.
- 7. Bohidar, S., Mohapatra, S., & Sukla, L. B. (2009). Nickel recovery from chromite overburden of Sukinda using fungal strains. International Journal of Integrated Biology, 5, 103-107.
- 8. Bosshard, P. P., Bachofen, R., & Brandl, H. (1996). Metal leaching of fly ash from municipal waste inceneration by Aspergillus niger. Environmental Science and Technology, 30, 3066-3070.
- 9. Burgstaller, W., & Schinner, F. (1993). Leaching of metals with fungi. Journal of Biotechnology, 27, 91-116.
- 10. Burgstaller,W., Strasser, H.,Wobking, H., & Schinner, F. (1992). Solubilization of zinc oxide from filter dust with Penicillium simplicissimum: Bioreactor leaching and stroichiometry. Environmental Science and Technology, 26, 340-346.
- 11. Calomiris, J. J., Armstrong, T. L., & Seidler, R. J. (1984). Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water. Applied and Environmental Microbiology, 47, 1238-1242.
- 12. Castro, I. M., Fietto, J. L. R., Vieira, R. X., Tropia, M. J. M., Campos, L. M. M., Paniago, E. M., et al. (2000). Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures. Hydrometallurgy, 57, 39-49.
- 13. Coto, O., Bruguera, N., Abin, L., Gamboa, J., & Gomez, Y. (2001). Bioleaching of Cuban nikeliferous serpentinite. In V. S. T. Ciminelli, & O. Garcia (Eds.), Biohydrometallurgy; fundamental Technology and sustainable development, Part A (pp. 175-182).
- 14. Dwivedi, R. S. (1970). Evaluation methods for measuring productivity in wheat and marvel grass. Indian Journal Agricultural Science, 40, 81-88.
- 15. Franz, A., Burgstaller, W., & Schinner, F. (1991). Leaching with Penicillium simplissicimum: Influence of metals and buffers on proton extrution and citric acid production. Applied and Environmental Microbiology, 57, 769-774.
- 16. Ghosh, S., & Paul, A. K. (2015). Heterotrophic leaching of metals from Indian chromite mining overburden. International Journal of Mining, Reclamation and Environment, 1-12. http://dx.doi.org/10.1080/17480930.2015.11181.
- 17. Jackson, M. L. (1973). Soil chemical analysis. 14. New Delhi: Prentice Hall.
- 18. Jain, N., & Sharma, D. K. (2004). Biohydrometallurgy of non-sulfidic minerals-A review. Geomicrobiology Journal, 21, 135-144.
- 19. Ke, J., & Li, H. (2006). Bacterial leaching of nickel bearing pyrroholite. Hydrometallurgy, 82, 172-175.
- 20. Kretz, R. (1983). Symbols of rock-forming minerals. American Minerologist, 68, 277-279.
- 21. Le, L., Tang, J., Ryan, D., & Valix, M. (2006). Bioleaching of nickel laterite ore using multi-metal tolerant Aspergillus foetidus organism. Minerals Engineering, 19, 1259-1265.
- 22. Mohapatra, S., Bohidar, S., Pradhan, N., Kar, R. N., & Sukla, L. B. (2007). Microbial extraction of nickel from Sukinda chromite overburden by Acidithiobacillus ferrooxidans and Aspergillus strains. Hydrometallurgy, 85, 1-8.
- 23. Mulligan, C. N., & Galvez-Cloutier, R. (2000). Bioleaching of copper mining residues by Aspergillus niger. Water Science and Technology, 4, 255-262.
- 24. Mulligan, C., & Galvez-Cloutier, R. (2003). Bioremediation of metal contamination. Environmental Monitoring Assesment, 84, 45-60.
- 25. Mulligan, C. N., Kamali, M., & Gibbs, B. F. (2004). Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger. Journal of Hazardous Materials, 110, 77-84.
- 26. Pradhan, D., Pal, S., Sukla, L. B., Roy Chaudhury, G., & Das, T. (2008). Bioleaching of low-grade copper ore using indigenous microorganisms. Indian Journal of Chemical Technology, 15, 588-592.
- 27. Rao, D. V., Channappa, T. S., & Gaddad, S. M. (2002). Bioleaching of copper from chalcopyrite ore by fungi. Indian Journal of Experimental Biology, 40, 319-324.
- 28. Ren, W. X., Li, P. J., Geng, Y., & Li, X. J. (2009). Biological leaching of heavy metals from a contaminated soil by Aspergillus niger. Journal of Hazardous Materials, 167, 164-169.
- 29. Rohwerder, T., Gehrke, T., Kinzler, K., & Sand, W. (2003). Bioleaching review Part A: Fundamentals and mechanisms of bacterial metal sulphide oxidation. Applied Microbiology and Biotechnology, 63, 239-248.
- 30. Saeed, S., Bhatti, H. N., & Bhatti, T. M. (2002). Bioleaching studies of rock phosphate using Aspergillus niger. Online Journal of Biological Science, 2, 76-78.
- 31. Valix, M., Usai, F., & Malik, R. (2001). Fungal bio-leaching of low grade laterite ores. Mineral Engineering, 14, 197-203.
- 32. Vasan, S. S., Modak, J. M., & Natarajan, K. A. (2001). Some recent advances in the bioprocessing of bauxite. International Journal of Mineral Processing, 62, 173-186.
- 33. Zilouei, H., Shojaosadati, S. A., Kalilzadeh, R., & Nasernejad, B. (2003). Bioleaching of copper from low-grade ore using isolated bacteria and defined mixed cultures. Iranian Journal of Biotechnology, 1, 162-167.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e84ef427-2888-4d56-af23-5740c1d791ca