PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of powering the microbial fuel cell with various kinds of wastewater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The possibility to combine wastewater treatment and electricity production can accomplish a microbial fuel cell. Microbial fuel cells use glucose from wastewater as a fuel. In recent years, both production of municipal and industry wastewater increases very much. Municipal wastewater is directed to the wastewater treatment plant. While industry wastewater can be use as a fertilizer. But, both municipal and industry wastewater can be used in the microbial fuel cells. The comparison of powering the microbial fuel cell with municipal and process wastewater from yeast production is presented in this paper. The measurements covered comparison of changes in the concentration of COD in the reactor without aeration, with aeration and with using a microbial fuel cell (powered with municipal and industry wastewater). The results of measurements of COD showed no differences between the microbial fuel cell powered with municipal wastewater and the microbial fuel cell powered with process yeast wastewater. But, the power output is higher with using process yeast wastewater to powering the microbial fuel cell.
Rocznik
Tom
Strony
131--140
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Institute of Technical Sciences Faculty of Natural Sciences and Technology University of Opole Dmowskiego Street 7-9 45-365 Opole Poland
  • Institute of Technical Sciences Faculty of Natural Sciences and Technology University of Opole Dmowskiego Street 7-9 45-365 Opole Poland
Bibliografia
  • Berk, R.S., Canfield, J.H. (1964). Bioelectrochemical energy conversion, Applied and Environmental Microbiology, 12: 10-12.
  • Bond, D.R., Lovley, D.R. (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol., 69: 1548-1555.
  • Brendecke, J., Axelson, R., Pepper, I. (1993). Soil microbial activity as an indicator of soil fertility: Long-term effects of municipal sewage sludge on an arid soil. Soil Biology and Biochemistry, 25(6):751-758.
  • Chaudhuri, S.K., Lovley, D.R. (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol., 21: 1229-1232.
  • Canfield, J.H., Goldner, B. H., Lutwack, R. (1963). NASA Technical report, Magna Corporation, Anaheim, California, USA. 63.
  • Cheng, S., Hong Liu, H., Logan, B.E. (2006) Power Densities Using Different Cathode Catalysts (Pt and CoTMPP) and Polymer Binders (Nafion and PTFE) in Single Chamber Microbial Fuel Cells, Environ. Sci. Technol., 40(1): 364-369. DOI:10.1021/es0512071.
  • Cohn, E.M. (1963). Perspectives on biochemical electricity. Developments in Industrial Microbiology, 4:53-58.
  • Cohen, B. (1931). The bacterial culture as an electrical half-cell, Journal of Bacteriology 21: 18-19.
  • Davis, J.B., Yarbrough, H.F. (1962). Preliminary experiments on a microbial fuel cell. Science, 137: 615-616.
  • Delaney, G.M., Bennetto, H.P., Mason, J.R., Roller, S.D., Stirling, J.L., Thurston, C.F. (1984). Electron-transfer coupling in microbial fuel cells. 2. performance of fuel cells containing selected microorganism - mediator-substrate combinations. Journal of Chemical Technology & Biotechnology 34: 13-27.
  • Huggins, T., Fallgren, P.H., Jin, S., Ren, Z.J. (2013). Energy and performance comparison of microbial fuel cell and conventional aeration treating of wastewater, J. Microb. Biochem. Technol., S6:002. DOI: 10.4172/1948-5948.S6-002.
  • Kim, H.J., Park, H.S., Hyun, M.S., Chang, I.S., Kim, M., Kim, B.H. (2002). A mediatorless microbial fuel cell using a metal reducing bacterium, Shewanella putrefacians. Enzyme Microbiol. Technol., 30: 145-152.
  • Kobya M., Delipinar S., (2008). Treatment of the baker’s yeast wastewater by electrocoagulation. Journal of Hazardous Materials, 154(1-3): 1133-1140.
  • Kutera J., (1986). Use of wastewater from spirit and yeast industry in agriculture (in Polish). Falenty. Instructional materials IMUZ (52).
  • Lewis, K. (1966). Symposium on bioelectrochemistry of microorganisms: IV. Biochemical fuel cells. Bacteriol. Rev. 30(1): 101-113.
  • Liu, H., Ramnarayanan, R., Logan, B.E. (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38: 2281-2285.
  • Logan, B.E. (2008). Microbial fuel cell, Wiley & Sons.
  • Logan, B.E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Verstraete, W., Rabaey, K. (2006). Microbial Fuel Cells: Methodology and Technology, Environ. Sci. Technol., 40 (17): 5181-5192. DOI: 10.1021/es0605016.
  • Nowak A.J., Królik D., Kostecki J. (2013). Wastewater treatment in constructed wetlands. Civil and Environmental Engineering Reports, 11: 93-99.
  • Park, H.S., Kim, B.H., Kim, H.S., Kim, H.J., Kim, G.T., Kim, M., Chang, I.S., Park, Y.K., Chang, H.I. (2001). A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7: 297-306.
  • Pham, C.A., Jung, S.J., Phung, N.T., Lee, J., Chang, I.S., Kim, B.H., Yi, H., Chun, J. (2003). A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from amicrobial fuel cell. FEMS Microbiol. Lett., 223: 129-134. DOI: 10.1016/S0378-1097(03)00354-9.
  • Płuciennik-Koropczuk, E., Sadecka, Z., Myszograj, S. (2013). COD fractions in raw and mechanically treated wastewater. Civil and Environmental Engineering Reports, 11: 101-113.
  • Potter, M.C. (1911). Electrical effects accompanying the decomposition organic compounds. Proc. Roy. Soc. London Ser. B84: 260-276.
  • Rabaey, K., Verstraete, W. (2005). Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 23: 291-298.
  • Roller, S.D., Bennetto, H.P., Delaney, G. M., Mason, J. R., Stirling, J. L., Thurston, C. F. (1984). Electron - transfer coupling in microbial fuel cells: 1. comparison of redox-mediator reduction rates and respiratory rates of bacteria. Journal of Chemical Technology & Biotechnology 34: 3-12.
  • Thornton, I. (scienticic co-ordinator), (2001). Pollutants in urban wastewater and sawage sludge. London. Final Report, ICON.
  • Wang X., Feng, Y.J., Lee, H. (2008). Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Sci. Technol., 57: 1117-1121.
  • Włodarczyk, B., Włodarczyk, P.P. (2016). Analysis of possibility of yeast production increase at maintained carbon dioxide emission level. Civil and Environmental Engineering Reports 23(4): 163-176. DOI: 10.1515/ceer-2016-0060.
  • Włodarczyk, B.; Włodarczyk, P.P. (2017a). Microbial fuel cell with Cu-B cathode powering with wastewater from yeast production. Journal of Ecological Engineering 18(4): 224-230. DOI https://doi.org/10.12911/22998993/74287.
  • Włodarczyk, B., Włodarczyk, P.P. (2017b). Microbial fuel cell with Cu-B cathode and KMnO4 catholyte, Infrastructure and Ecology of Rural Areas 4(3): 1823-1831. DOI: http://dx.medra.org/10.14597/infraeco.2017.4.3.137.
  • Włodarczyk, B., Włodarczyk, P.P. (2017c). Microbial fuel cell with Ni-Co cathode. Rudy i Metale Nieżelazne Recykling 62 (8): 11-14.
  • Włodarczyk, B., Włodarczyk, P.P., Kalinichenko, A. (2017). Single chamber microbial fuel cell with Ni-Co cathode. EEMS 2017, E3S Web of Conferences 19, 01025. DOI: 10.1051/e3sconf/20171901025.
  • Włodarczyk, P.P. Włodarczyk, B. (2018). Microbial Fuel Cell with Ni-Co Cathode Powered with Yeast Wastewater Energies 11 (11): 3194. DOI:10.3390/en11113194.
  • Włodarczyk, B., Włodarczyk, P.P. (2019a). Analysis of the potential of an increase in yeast output resulting from the application of additional process wastewater in the evaporator station. Applied Sciences 9(11): 2282. DOI: https://doi.org/10.3390/app9112282.
  • Włodarczyk, P.P., Włodarczyk, B. (2019b). Wastewater treatment and electricity production in a microbial fuel cell with Cu-B alloy as the cathode catalyst. Catalysts 9(7): 572. DOI: https://doi.org/10.3390/catal9070572.
  • Zub, S., Kurissoo, T., Menert, A., Blonskaja, V. (2008). Combined biological treatment of high-sulphate wastewater from yeast production. Water and Environment Journal 22(4): 274–286.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8496289-ffa1-43e5-afbc-8b26a90526cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.