PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Evapotranspiration and Performance of Emerging Plants: Case of Cyperus papyrus and Typha latifolia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The treatment of wastewater in small rural settlements requires special attention in the choice of the purification technique to be used, insofar as experience has shown that the technologies initially developed for the urban environment do not prove to be as effective for the rural environment. The current trend tends towards autonomous systems. Among these systems are Floating treatment wetlands. The objective of this study was to evaluate the evapotranspiration and the performances of two emerging plants; Cyperus papyrus and Typha latifolia. The experimental device was composed of three test tanks whose dimensions were: length = 1 m, width = 1 m and water height = 0.85 m – two tanks with emerging plants (Cyperus papyrus and Typha latifolia) and a control tank without vegetation. The monitoring of the evolution of plant evapotranspiration and the evaporation of the control tank for different periods and temperatures showed that the volumes of water lost were respectively for Cyperus papyrus, Typha latifolia and control tank: (1) 130 liters, 230 liters and 5 liters for two days at an average temperature of 26.3 °C; (2) 125 liters, 150 liters and 0 liters for two days at an average temperature of 26.7 °C; (3) 240 liters, 280 liters and 5 liters for three days at an average temperature of 27.3 °C; (4) 140 liters, 260 liters and 10 liters for two days at an average temperature of 26 °C; (5) 140 liters, 240 liters and 5 liters for two days at an average temperature of 27.3 °C; (6) 260 liters, 550 liters and 10 liters for four days at an average temperature of 28.6 °C. It turned out that the presence of plants as well as the temperature and the retention time in the tanks have a impact on the loss of water and more precisely those with emerging macrophytes. The present study has shown that the floating treatment wetlands planted with Cyperus papyrus and Typha latifolia can be used for wastewater treatment. Indeed, the removal efficiency in terms of COD, BOD5 and SS were respectively: 76%, 75.3% and 95.90% for Cyperus papyrus and 70.45%, 66.5% and 93.70% for Typha latifolia.
Rocznik
Strony
257--267
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Laboratory of Process Engineering & Environment, Faculty of Sciences & Techniques, Hassan II University of Casablanca, BP 146, Mohammedia, 28806, Morocco
  • Laboratory of Process Engineering & Environment, Faculty of Sciences & Techniques, Hassan II University of Casablanca, BP 146, Mohammedia, 28806, Morocco
  • International Institute of Water and Sanitation of the National Office of Electricity and Drinking Water – Water Branch, Avenue Belhassan El Ouazzani, Rabat Chellah, 10002, Morocco
  • International Institute of Water and Sanitation of the National Office of Electricity and Drinking Water – Water Branch, Avenue Belhassan El Ouazzani, Rabat Chellah, 10002, Morocco
  • Laboratory of Process Engineering & Environment, Faculty of Sciences & Techniques, Hassan II University of Casablanca, BP 146, Mohammedia, 28806, Morocco
Bibliografia
  • 1. AFNOR, 1994. Water quality, Environment. Collection of French standards (in French). Paris.
  • 2. Alex J.F., Mulligan G.A. and Cayouette R. 1980. Common and botanical names of weeds in Canada. Canadian Government Publishing Centre, Ottawa.
  • 3. Allen R.G., Pereira L.S., Raes D. and Smith M. 1998. Crop Evapotranspiration. FAO Irrigation and drainage paper No. 56. Food and Agriculture Organization of the United Nations, Rome.
  • 4. Boar R.R., Harper D.M. and Adams C.S. 1999. Biomass allocation in Cyperus papyrus in a tropical wetland, Lake Naivasha, Kenya. Biotropica, 31(3), 411–421.
  • 5. Chale F. 1987. Plant biomass and nutrient levels of a tropical macrophyte (Cyperus papyrus L.) receiving domestic wastewater. Aquatic Ecology, 21(2), 167–170.
  • 6. Choudhary D. 2018. Methods of Evapotranspiration. Ph.D. Thesis, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India.
  • 7. Monier A.E., El-Fiky A.M., Soliman A. and Khattab A. 2011. Environmental relationships of aquatic vegetation in the fresh water ecosystem of the Nile Delta, Egypt. African Journal of Ecology, 49(1), 103–118.
  • 8. El Hafidi M. 2021. Phyto-purification of domestic wastewater on a vertical filter planted with Cyperus papyrus: optimization of design parameters and cost analysis (In French). Ph.D. Thesis, Mohammedia University, Rabat, Morocco.
  • 9. Fahd K., Martín I. and Salas J.J. 2007. The carrión de los céspedes experimental plant and the technological transfer centre: urban wastewater treatment experimental platforms for the small rural communities in the Mediterranean area. Desalination, 215, 12–21.
  • 10. Ijaz A., Shabir G., Khan Q.M. and Afzal M. 2015. Enhanced remediation of sewage effluent by endophyte-assisted floating treatment wetlands. Ecological Engineering 84, 58–66.
  • 11. Nivala J., Scott W., Van Afferden M. and Müller R. A. 2022. Evapotranspiration dynamics in aerated and non-aerated subsurface flow treatment wetlands. Science of the Total Environment, 843, 156605.
  • 12. Kadlec R.H. and Scott D.W. 2009. Treatment Wetlands. Second edition. CRC Press, Boca Raton, Florida.
  • 13. Latrach L., Belloulid M.O., El Moussaoui T., Bougarrani S., Elfanssi S. and Elassri O. 2018. Rural sanitation in morocco: situation, realizations and perspectives. Environmental and Water Sciences, Public Health & Territorial Intelligence, 2(3), 63–72.
  • 14. Papaevangelou V.A., Gikas G. D. and Tsihrintzis V.A. 2012. Evaluation of evapotranspiration in small on-site HSF constructed wetlands. Journal of Environmental Science and Health, Part A, 47(5), 766–785.
  • 15. Revedin A., Aranguren B., Becattini R., Longo L., Marconi E., Lippi M., Skakun N., Sinitsyn A., Spiridonova E. and Svoboda J. 2010. Thirty thousand-year-old evidence of plant food processing. Proceedings of the National Academy of Sciences of the United States of America, 107 (44), 18815–18819.
  • 16. Tanner C.C. and Headley T.R. 2011.Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecological Engineering, 37, 474–486.
  • 17. Van Dam A., Kipkemboi J., Zaal F. and Okeyo-Owuor J.B. 2011. The ecology of livelihoods in East African papyrus wetlands (ECOLIVE). Reviews in Environmental Science and Biotechnology, 10(4), 291–300.
  • 18. www.Accuweather.com, weather data of the city of Rabat 2022 (in French).
  • 19. Zotarelli L., Dukes M.D., Romero C.C., Micgliaccio K.W. and Morgan K.T. 2010. Step by Step Calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method). Agricultural and Biological Engineering Department, UF/IFAS Extension, Gainesville, Florida, USA.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e845c087-fe99-4cd3-8181-b58afc84ee97
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.