PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure and Mechanical Properties of the CO2 Laser Welded Joint of AZ91 Cast

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plates of AZ91 cast magnesium alloy with a thickness of 3.5 mm were butt-welded using a laser power of 2000 W and helium as the shielding gas. The effect of the welding speed on the weld cross-sectional geometry and porosity was determined by microscopic analysis. It was found that to avoid the formation of macropores, welding should be carried out at a speed of 3.4 m/min or higher. Non-equilibrium solidification of the laser-melted metal causes fragmentation of the weld microstructure. Joints that were welded at optimal laser processing parameters were subjected to structural observations using optical and scanning microscopy and to mechanical tests. The mechanical properties were determined through Vickers hardness measurements in the joint cross-section and through tensile testing. The results indicate that the hardness in the fusion zone was about 20 HV (30%) higher than that of the base material. The weld proved to be a mechanically stable part of the joint; all the tensile-tested specimens fractured outside the fusion zone.
Rocznik
Strony
9--14
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
  • Kielce University of Technology, Kielce, Poland
autor
  • Kielce University of Technology, Kielce, Poland
Bibliografia
  • [1] Edgar,R.L. (2000). Global overview on demand and application for magnesium. International Congress “Magnesium Alloys and Their Applications”, 26-28 September 2000 (pp. 3-8). Munich, Germany: Wiley-Vch Verlag.
  • [2] Pan, F., Yang, M. & Chen, X. (2016). A review on casting magnesium alloys: modification of commercial alloys and development of new alloys. Journal of Materials Science and Technology. 32, 1211-1221.
  • [3] Luo, A. & Pekguleryus, M.O. (1994). Cast magnesium alloys for elevated temperature applications. Journal of Materials Science. 29, 5259-5271.
  • [4] Polmear, I.J. (1994). Magnesium alloys and applications. Materials Science and Technology. 10, 1-16.
  • [5] Neite, G., Kubota, K., Higashi, K. & Hehmann, F. (2005). Magnesium-based alloys. In R. W. Cahn, P. Haasen, E. J. Kramer (eds.). Materials Science and Technology. 8/9, 113-212. Wiley-Vch. Verlag.
  • [6] Regev, M., Aghion, E., Rosen, A. & Bamberger, R. (1998). Creep studies of coarse-grained AZ91D magnesium castings. Materials Science and Engineering A. 252, 6-16.
  • [7] Song, G., Bowles, A.L. & StJohn, D.H. (2004). Corrosion resistance of aged die cast magnesium alloy AZ91D. Materials Science and Engineering A. 366, 74-86.
  • [8] Munitz A., Cotler C., Stern A. & Kohn, G. (2001). Mechanical properties and microstructure of gas tungsten arc welded magnesium AZ91D plates. Materials Science and Engineering A. 302, 68-73.
  • [9] Zhu, T., Chen, Z.W. & Gao, W. (2006). Incipient melting in partially melted zone during arc welding of AZ91D magnesium alloy. Materials Science and Engineering A. 416, 246-252.
  • [10] Shen, J., You, G., Long, S. & Pan, F. (2008). Abnormal macropore formation during double-sided gas tungsten arc welding of magnesium AZ91 alloy. Materials Characterization. 59, 1059-1065.
  • [11] Braszczyńska-Malik, K.N. & Mróz, M. (2011). Gas tungsten arc welding of AZ91 magnesium alloy. Journal of Alloys and Compounds. 509, 9951-9958.
  • [12] Marya, M. & Edwards, G.R. (2001). Factors controlling the magnesium weld morphology in deep penetration welding by a CO2 laser. Journal of Materials Engineering and Performance. 10, 435-443.
  • [13] Dhahri, M., Masse, J.E., Mathieu J.F., Barreau, G. & Autric, M. (2001). Laser welding of AZ91 and WE43 magnesium alloys for automotive and aerospace industries. Advanced Engineering Materials. 3, 504-507.
  • [14] Cao, X., Jahazi, M., Immarigeon, J.P. & Wallace, W. (2006). A review of laser welding techniques for magnesium alloys. Journal of Materials Processing Technology. 171, 188-204.
  • [15] Abderrazak, K., Salem, W.B., Mhiri, H., Bournot, P. & Autric, M. (2009). Nd:YAG Laser Welding of AZ91 magnesium alloy for aerospace industries. Metallurgical and Materials Transactions B. 40, 54-61.
  • [16] Wahba, M., Mizutani, M., Kawahito, Y. & Katayama, S. (2012). Laser welding of die-cast AZ91D magnesium alloy. Materials and Design. 33, 569-576.
  • [17] Marya, M. & Edwards, G.R. (2000). The laser welding of magnesium alloy AZ91. Welding in the World. 44, 31-37.
  • [18] Kouadri, A. & Barrallier, L. (2011). Study of Mechanical Properties of AZ91 magnesium alloy welded by laser process taking into account the anisotropy microhardness and residual stresses by X-Ray diffraction. Metallurgical and Materials Transactions A. 42, 1815-1826.
  • [19] Predel, B. (1998). Landolt-Börstein - Group IV physical chemistry (Numerical data and functional relationships in science and technology). Berlin: Springer-Verlag.
  • [20] Dahle, A.K., Lee, Y.C., Nave, M.D,. Schaffer, P.L. & StJohn, D.H. (2001). Development of the as-cast microstructure in magnesium-aluminium alloys. Journal of Light Metals. 1, 61-72.
  • [21] Dziadoń, A., Bucki, T. & Porzucek, P. (2018). The effect of non-equilibrium solidification on the structure and mechanical properties of AZ91 alloy. Archives of Foundry Engineering. 18(3), 120-125.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e843ad83-57f5-454f-9fb7-b7ac238ffd0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.