PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strupczewski Method for Parametric Design Hydrographs in Ungauged Cross-Sections

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nonparametric hydrographs, constructed by the method suggested by Archer, are usually used for developing parametric design hydrographs. Flow changes in time are described by the UPO ERR Gamma complex function, which denotes a Gamma curve reformulated to have a Unit Peak at the Origin (abbreviated to UPO), supplemented by the Exponential Replacement Recession (ERR) curve. It may be observed, that this solution does not work in some areas of the upper Vistula and middle Odra catchments when the times of the rising limb of a hydrograph are higher than the times of the falling limb, i.e. when the skewness coefficient approximates 0.5 or higher values. Better results can be achieved with the function suggested by Strupczewski in 1964. It is a solution which uses two parameters of the flood hydrograph. The objective of the present paper is to assess the Strupczewski method by comparing it with a complex UPO ERR Gamma function for gauged cross-sections in the upper Vistula and middle Odra catchments. The assessment was carried out for 30 gauged cross-sections (15 in each river catchment). The parameters were optimized for width-hydrograph descriptors W75 and W50, designed by the Archer method, and for the skewness coefficient s. Optimization using only two width-hydrograph descriptors aims to test how the Strupczewski method works for cross-sections for which the values of width-hydrograph descriptors W75 and W50 are known. The assessment of both methods was carried out with reference to a nonparametric hydrograph constructed by the Archer method. The results of these assessments suggest that the Strupczewski method may be used not only for gauged cross-sections, but also for ungauged ones.
Rocznik
Strony
49--67
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Institute of Water Engineering and Water Management, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków
autor
  • Institute of Water Engineering and Water Management, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków
autor
  • Institute of Meteorology and Water Management PIB –Wrocław Branch, Drought and Flood Modelling Center in Wrocław, ul. Parkowa 30, 51-616 Wrocław
Bibliografia
  • Apel H., Thieken A. H., Merz B., Blöschl G. (2006) A Probabilistic Modelling System For Assessing Flood Risks, Natural Hazards, 38, 295–308.
  • Archer D., Foster M., Faulkner D., Mawdsley H. (2000) The Synthesis of Design Flood Hydrographs, Proc. Flooding: Risks And Reactions, CIWEM/ICE Conference, London, 45–57.
  • Baptista M., Michel C. (1990) Influence Des Caracteristiques Hydrauliques Des Bies Sur La Propagation Des Pointes De Crue, La Houille Blanche, 2, 141–148.
  • Ciepielowski A. (1987) Statistical Methods of Determining Typical Winter and Summer Hydrographs for Ungauged Watersheds, International Symposium on Hood Frequency and Risk Analyses, Department of Civil Engineering, Louisiana State University, Baton Rouge, 117–124.
  • Ciepielowski A. (2001) Relationships Between Selected Elements of the Flood Hydrographs in Rivers, Journal of Water and Land Development, (5), 89–105.
  • Criss R. E., Winston W. E. (2008) Discharge Predictions of a Rainfall-Driven Theoretical Hydrograph Compared to Common Models and Observed Data,Water Resources Research, 44, W10407, Doi:10.1029/2007WR006415
  • Elshorbagy A., Simonovic S. P., Panu U. S. (2000) Performance Evaluation of Artificial Neural Networks for Runoff Prediction, Journal of Hydrologic Engineering, 5, 424–427.
  • Gądek W., Środula A. (2014), The Evaluation of the Design Flood Hydrographs Determined with the Hydroproject Method in the Gauged Catchments, Infrastruktura i Ekologia Terenów Wiejskich, Nr 2014/IV (3), 1355–1366.
  • GądekW., Bodziony M. (2015) The Hydrological Model and Formula for Determining the Hypothetical FloodWave Volume in Non-Gauged Basin, Meteorology, Hydrology andWater Management, 3 (1), 3–10.
  • Gądek W., Tokarczyk T. (2015) Determining Hypothetical Floods in the Odra Basin by Means of the Cracow Method and by Volume Formula, Infrastructure and Ecology of Rural Areas, IV/4, 1507–1519.
  • Gądek W., Tokarczyk T., Środula A. (2016) Estimation of Parametric Flood Hydrograph Determined by Means of Strupczewski Method in the Vistula and Odra Catchments, Journal ofWater and Land Development, 31 (X-XII), 43–51.
  • Gądek W., Baziak B., Tokarczyk T. (2017) Nonparametric Design Hydrograph in the Gauged Cross Sections of the Vistula and Odra Catchment, Meteorology Hydrology and Water Management, 5 1, 53–61.
  • Hayashi T., Nagamine Y., Nishida A. (1986) A Vibration Model to Describe the Lactation Curve of a Dairy Cow, Japanese Journal of Zootechnical Science, 57, 471–478.
  • Hattermann F. F., Kundzewicz Z. W. (Ed.) (2010) Water Framework Directive: Model Supported Implementation. A Water Manager’s Guide, IWA Publishing, London.
  • Krišèiukaitiene I., Baležentis T., Galnaitytė A., Namiotko V. (2015) A Methodology for Flood Risk Appraisal in Lithuania, Journal of Water and Land Development, (25), 13–22.
  • McEnroe B. M. (1992) Sizing Stormwater Detention Reservoirs to Reduce Peak Flow, Hydraulic Engineering: Saving a Threatened Resource – in Search of Solutions, Conference Proceeding Paper, Reston. VA. ASCE., 719–724.
  • Mioduszewski W. (2012) Small Water Reservoirs – Their Function and Construction, Journal of Water and Land Development, (17), 45–52.
  • Mioduszewski W. (2014) Small (Natural) Water Retention in Rural Areas, Journal of Water and Land Development, (20), 19–29.
  • O’Connor K., Goswami M., Faulkner D. (2014) Flood Studies Update. Technical Research Report, Volume III. Hydrograph Analysis, 186 pp.
  • Ozga-Zielińska M., Gądek W., Książyński K., Nachlik E., Szczepanek R. (2002) Mathematical Model of Rainfall-Runoff Transformation – WISTOO, Mathematical Models of LargeWatershed Hydrology, Ed. Singh V. P., Frevert D. K., Water Resources Publications, LLC, Littleton, Colorado, 811–860.
  • Pietrusiewicz I., Cupak A., Wałęga A., Michalec B. (2014) The Use of NRCS Synthetic Unit Hydrograph and Wackermann Conceptual Model in the Simulation of a Flood Wave in an Uncontrolled Catchment, Journal of Water and Land Development, (23), 53–59.
  • Strupczewski W. (1964) Equation of Flood Crest, Wiadomości Służby Hydrologicznej i Meteorologicznej, 2 (57), 35–58.
  • Vrijling J. K., Van Hengel W., Houben R. J. (1998) Acceptable Risk as a Basis for Design, Reliability Engineering and System Safety, 59, 141–150.
  • Tokarczyk T., Szalińska W. (2013) The Operational Drought Hazard Assessment Scheme – Performance and Preliminary Results, Archives of Environmental Protection, 39 (3), 61–77.
  • Wałęga A. (2013) Application of HEC-HMS Programme for the Reconstruction of a Flood Event in an Uncontrolled Basin, Journal of Water and Land Development, (18), 13–20.
  • WMO (2008) Urban Flood Risk Management. A Tool for Integrated Flood Management.
  • Zevenbergen C., Cashman A., Evelpidou N., Pasche E., Garvin S., Ashley R. (2011) Urban Flood Management, CRC Press London.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e83d9132-6758-4051-8671-3b2dd56672f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.