PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Healed or non-healed? Computed tomography (CT) visualisation of morphology of bite trace ichnotaxa on a dinosaur bone

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bite traces on fossilised bones can provide important information on predator-prey relations and interactions in ancient environments. In 2009, two new ichnotaxa, Linichnus serratus and Knethichnus parallelum, were introduced to develop the application of bite traces as an ichnological tool. Ichnotaxa defined by theropod bite traces can provide useful information for understanding feeding behaviour. However, objective interpretation of possible bite traces can be difficult using traditional visual inspection. In this study, the bite traces on a fossilised dinosaur bone were comprehensively examined by correlating traditional naked-eye in spection with computed tomography (CT) imaging, used to visualise the internal morphology of the bite traces and in particular, to clarify the appearance of one possibly healed bite trace. A forensic pathologist visually examined the bone with the aid of stereomicroscopy and a radiologist analysed the CT scans. Sixteen different scanner settings were used to optimise the CT parameters and avoid signal at tenuation, in the form of hypointense artefacts in the central trabeculated part of the bone fragment. The use of CT scanning provided information on internal morphology from the vicinity of the bite trace, including hyperdense zones, not identified using visual inspection alone. By applying the extended CT scale, the dense and radiopaque cortical bone layer could be clearly identified and applied as a pathomorphological marker to correctly distinguish non-healed from healed wounds. In conclusion, the authors demonstrate that external visual examination of trace fossils by ichnologists in combination with interior examination using CT imaging can be applied to characterise ichnotaxa defined by bite traces and potentially provide clues on ancient feeding behaviour.
Rocznik
Strony
457--464
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • The Steno Museum, Aarhus University, C.F. Moellers Alle 2, DK-8000 Aarhus C, Denmark
autor
  • Comparative Medicine Lab, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
autor
  • Department of Radiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
  • Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
autor
  • Comparative Medicine Lab, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
Bibliografia
  • 1. Amira 3D Software for Life Sciences, http://www.fei.com/softt ware/amira-3d-for-life-sciences/
  • 2. Autodesk 123D Catch, Generate 3D Model from Photos, http:// www.123dapp.com/catch
  • 3. Barnatt, C., 2013. 3D Printed: The Next Industrial Revotution. Printed and bound by ExplainingThe Future.com.
  • 4. Boyd, C. A., Drumheller, S. K. & Gates, T. A., 2013. Crocodyliform feedtng traces on juvenile ornithischian dinosaurs from the Upper Cretaceous (Campanian) Kaiparowits Formation, Utah. PlosOne, 8(2):e57605. doi: 10.1371/journal. pone.0057605.
  • 5. Coolens, C. & Childs, P. J., 2003. Cahbration of CT Hounsfield units for radiotherapy treatment planning of patients with metallic hip prostheses: the use of the extended CT-scale. Physics in Medicine and Biology, 48: 1591-1603.
  • 6. Curtie, P. J. & Jacobsen, A. R., 1995. An azhdarchid pterosaur eaten by a velociraptorine theropod. Canadian Journal of Earth Sciences, 32: 922-925.
  • 7. D’Amore, D. C. & Blumenschine, R. J., 2012. Using striated tooth marks on bone to predict bodysize in theropod dinosaurs: a model based on feedmg ob tervations of Varanus komodoensis, The Komodo monitor. Paleobiology, 38: 79-100.
  • 8. DePalma, R. A., II, Burnham, D. A., Martin, L. D., Rothschild, B. M. & Larson, P. L., 2013. Physical evidence of predatory behavror In Tyrannosaurus rex. Proceedtngs of the National Academy of Sciences of the United States of America, 110: 12560-12564.
  • 9. Erickson, G. M. & Olson, K. H., 1996. Bite marks attributable to Tyrannosaurus rex: Preliminary description and implications. Journal of Vertebrate Paleontology, 16: 175-178.
  • 10. Erickson, G. M., Van Kirk, S. D., Su, J., Levenston, M. E., Caler, W. E. & Carter, D. R., 1996. Bite-force estimation for Tyrannosaurus rex from tooth-marked bones. Nature, 382: 706708.
  • 11. Fiorillo, A. R., 1991. Prey bone utilization by predatory dinosaurs. Palaeogeography, Palaeoclimatology, Palaeoecology, 88: 157-166.
  • 12. Geneser, F., 2002. Histologi - på molekylœzrbiologisk grundlag. Munksgaard, Viborg [In Danish.]
  • 13. Golder, W. & Christian, A., 2002. Quantitative CT of dinosaur bones. Journal of Computer Assisted Tomography, 26: 821-824.
  • 14. Jacobsen, A. R., 1998. Feeding behaviour of carnivorous dinosaurs as determined by tooth marks on dinosaur bones. Historical Biology, 13: 17-26.
  • 15. Jacobsen, A. R. & Bromley, R. G., 2009. New ichnotaxa based on tooth impression on dinosaur and whale bones. Geological Quarterly, 53: 373-382.
  • 16. Ketcham, R. A. & Carlson W. D., 2001. Acquisition, optimization and interpretation of X-raycomputed tomographic imagery: applications to the geosciences. Computer & Geosciences, 27: 381-400.
  • 17. Klotz, E., Kalender, W. A., Sokiransky, R. & Felsenberg, D., 1990. Algorithms for the reduction of CT artifacts caused by metallic implants. Proceedings of SPIE, Medical Imaging, 1234: 642-640.
  • 18. Link, T. M., Berning, W., Scherf, S., Joosten, U., Joist, A., Engelke, K. & Daldrup-Link, H. E., 2000. CT of metal implants: Reduction of artifacts using an extended CT scale technique. Journal of Computer Assisted Tomography, 24: 165-172.
  • 19. Martin, E. G. & Palmer, C., 2014. A novel method of estimating pterosaur skeletal mass using computed tomography scans. Journal ofVertebrate Paleontology, 34: 1466-1469.
  • 20. Mikuláš, R., Kadlecová, E., Fejfar, O. & Dovořák, Z., 2006. Three new ichnogenera of biting and gnawing traces on reptilian and mammalian bones: A Case study from the Miocene of the Czech Republic. Ichnos, 13: 113-127.
  • 21. Njau, J. K. & Blumenschine, R. J., 2012. Crocodylian and mammalian carnivore feeding traces on hominid fossils from FLK 22 and FLK NN 3, Plio-Pleistocene, Olduvai Gorge, Tanzania. Journal of Human Evolution, 63: 408-417.
  • 22. Pirrone, C. A., Buatois, L. A. & Bromley, R. G., 2014. Ichnotaxoobases for bioerosion trace fossils in bones. Journal of Paleontology, 88: 195-203.
  • 23. Rogers, R. R., Krause, D. W. & Rogers, K. C., 2003. Cannibalism in the Madagascan dinosaur Majungatholus atopus. Nature, 422: 515-518.
  • 24. Straight, W. H., Davis, G. L., Skinne, H. C. W., Haims, A., McClennan, B. L. & Tanke, D. H., 2009. Bone lesions in Hadrosaurs: computed tomographic imaging as a guide for paleohistologic and stable-isotopic analysis. Journal of Vertebrate Paleontology, 29: 315-325.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e83959a6-c3d6-4865-b4f8-c28c0eecb10d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.