Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Decomposition is an important carbon flux that must be accounted for in estimates of forest ecosystem carbon balance. Aim of this research is to provide estimate of fine woody debris decomposition rates for different tree species and sample sizes also taking into account the influence of specific microsite meteorological conditions on decomposition rates. In this paper we present results of the first two years of the experiment designed to last six years. Study was conducted in managed lowland oak forest in central Croatia. Decomposition rates (k) of fine woody debris (diameter 0.5–7 cm) for four species (Querus robur L., Carpinut betulus L., Alnus glutinosa Gaernt., Fraxinus angustifolia L.) in four size classes were estimated using litter bag method and mass loss equation of Olson (1963). Overall average k in our study was 0.182 ± 0.011 year-1. Results indicate that decomposition rate is affected by the size of the debris, with the smallest diameter branches (<1 cm) decomposing is significantly faster (k = 0.260 ± 0.018, P <0.05) than the larger one. Tree species from which debris had originated also affected decomposition, although to a lesser extent, with hornbeam samples having significantly (P <0.05) higher average decomposition rate (0.229 ± 0.028), compared to that of ash samples (0.141 ± 0.022). Proportion of variability in k explained by variables ‘species’ and ‘size class’ was assessed with general linear model (R2 = 0.644) also taking into account variables like soil temperature and soil water content. Sample size class explained 22.2%; species explained only 9.4%, while soil water content and temperature combined explained 32.8% of the variance of k. Rate constants obtained within this study might be useful in modelling ecosystem carbon balance for similar lowland forest ecosystems in Europe.
Czasopismo
Rocznik
Tom
Strony
247--259
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
- Croatian Forest Research Institute, Cvjetno naselje 41, HR-10450 Jastrebarsko, Croatia
autor
- Croatian Forest Research Institute, Cvjetno naselje 41, HR-10450 Jastrebarsko, Croatia
autor
- Croatian Forest Research Institute, Cvjetno naselje 41, HR-10450 Jastrebarsko, Croatia
autor
- Faculty of Forestry University of Zagreb, Svetošimunska 25, HR-10000 Zagreb, Croatia
autor
- Faculty of Forestry University of Zagreb, Svetošimunska 25, HR-10000 Zagreb, Croatia
Bibliografia
- 1. Benić R. 1966 — [Forest technical manual] — Znanje, Zagreb, 568 pp. (in Croatian).
- 2. Berbeco M.R., Melillo J.M., Orians C.M. 2012 — Soil warming accelerates decomposition of fine woody debris —Plant Soil, 356: 405–417.
- 3. Bond-Lamberty B., Wang C.K., Gower S.T. 2003 — Annual carbon flux from woody debris for a boreal black spruce fire chronosequence — J. Geophys. Res. 107(D23):WFX 1-1-WFX 1–10.
- 4. Castro A., Wise D.H. 2010 — Influence of fallen coarse woody debris on the diversity and community structure of forest-floor spiders (Arachnida: Araneae) — Forest Ecol. Manag. 206: 2088–2101.
- 5. Chambers J.Q., Higuchi N., Schimel J.P., Ferreira L.V., Melack J.M. 2000 — Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon — Oecologia, 122: 380–388.
- 6. Chave J., Coomes D.A., Jansen S., Lewis S.L., Swenson N.G., Zanne A.E. 2009 — Towards a worldwide wood economics spectrum — Ecol. Lett. 12: 351–366.
- 7. Ćirić M. 1984 — [Soil Science] — Svjetlost, Sarajevo, 312 pp. (in Croatian).
- 8. Eaton J.M. 2005 — Woody debris and the carbon budget of secondary forests in the southern Yucatan peninsular region — M.Sc. thesis, Department of Environmental Sciences, University of Virginia, 76 pp.
- 9. Eaton J.M., Lawrence D. 2006 — Woody debris stocks and fluxes during succession in a dry tropical forest —Forest Ecol. Manag. 232: 46–55.
- 10. Edmonds R.L. 1980 — Litter decomposition and nutrient release in Douglas-fir, red alder, western hemlock, and Pacific silver fir ecosystems in western Washington — Can. J. Forest Res. 10: 327–337.
- 11. Edmonds R.L. 1987 — Decomposition rates and nutrient dynamics in small-diameter woody litter in four forest ecosystems in Washington — Can. J. Forest Res. 17: 499–509.
- 12. Fasth B.G., Harmon M.E., Sexton J., White P. 2011 — Decomposition of fine woody debris in a deciduous forest in North Carolina — J. Torrey Bot. Soc. 138: 192–206.
- 13. Frangi J.L., Richter L.L., Barrera M.D., Aloggia M. 1997 — Decomposition of Nothofagus fallen woody debris in forests of Tierra del Fuego, Argentina — Can. J. Forest Res. 27: 1095–1102.
- 14. Gough C.M., Vogel C.S., Kazanski C., Nagel L., Flower C.E., Curtis P.S. 2007 — Coarse woody debris and the carbon balance of a north temperate forest — Forest Ecol. Manag. 244: 60–67.
- 15. Harmon M.E., Baher G.A., Spycher G., Greene S.E. 1990 — Leaf-litter decomposition in the Picea/Tsuga forests of Olympic National Park, Washington, U.S.A. — Forest Ecol. Manag. 31: 55–66.
- 16. Harmon M.E., Franklin J.F., Swanson F.J., Sollins P., Gregory S.V., Lattin J.D., Anderson N.H., Cline S.P., Aumen N.G., Sedell J.R., Lienkaemper G.W., Cromack J.R.K., Cummins K.W. 1986 — Ecology of coarse woody debris in temperate ecosystems — Adv. Ecol. Res. 15: 133–302.
- 17. Harmon M.E., Whigham D.F., Sexton J., Olmsted I. 1995 — Decomposition and mass of woody detritus in the dry tropical forests of northeastern Yucatan Peninsula, Mexico — Biotropica, 27: 305–316.
- 18. Idol T.W., Figler R.A., Pope P.E., Ponder J.R.F. 2001 — Characterization of coarse woody debris across a 100 year chronosequence of upland oak-hickory forests — Forest Ecol. Manag. 149: 153–161.
- 19. IPCC 2003 — Good practice guidance for land use, land-use change and forestry (In: Institute for Global Environmental Strategies for the Intergovernmental Panel on Climate Change IPCC/IGES, Eds: J. Penman, M. Gytarsky, T. Hiraishi, D. Kruger, R. Pipatti, L. Buendia, K. Miwa, T. Ngara, K. Tanabe, F. Wagner) — Hayama,Japan, pp. 3.1–3.68, 3.301–3.304.
- 20. IPCC 2006 — 2006 IPCC Guidelines for National Greenhouse Gas Inventories — Agriculture, Forestry and Other Land Use (In: Institute for Global Environmental Strategies for the Intergovernmental Panel on Climate Change IPCC/IGES, Eds: H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara and K. Tanabe K.) — Japan, pp. 4.71.
- 21. Knoepp J.D., Reynolds B.C., Crossley D.A., Swank W.T. 2005 — Long-term changes in forest floor processes in southern Appalachian forests — Forest Ecol. Manag. 220: 300–312.
- 22. Kozlowski T.T., Pallardy S.G. 1997 — Physiology of woody plants — Academic Press, San Diego, 411 pp.
- 23. Landsberg J.J., Gower S.T. 1997 — Soil organic matter and decomposition (In: Applications of physiological ecology to forest management, Ed: H.A. Mooney) — Academic Press, San Diego, pp. 161–184.
- 24. Liu W., Schaefer D., Qiao L., Liu X. 2013 — What controls the variability of wood-decay rates? — Forest Ecol. Manag. 310: 623–631.
- 25. Luo Y., Zhou X. 2006 — Soil respiration and environment — Academic Press, San Diego, 319 pp.
- 26. Mackensen J., Bauhus J., Webber E. 2003 — Decomposition rates of coarse woody debris - A review with particular emphasis on Australian tree species — Aust. J. Bot. 51: 27–37.
- 27. Marjanović H., Ostrogović M.Z., Alberti G., Balenović I., Paladinić E., Indir K., Peressotti A., Vuletić D. 2011 —[Carbon dynamics in younger stands of Pedunculate oak during two vegetation periods] — Šumarski list 135 (special issue), pp. 59–73 (in Croatian, English summary).
- 28. Mayer B. 1996 — [Hydropedological relations in the region of lowland forests of the Pokupsko basin] (In: [Lowland forests of the Pokupsko basin], Ed: B. Mayer) — Radovi Šumarskog instituta, Jastrebarsko, pp.37–89 (in Croatian).
- 29. Muller-Using S., Bartsch N. 2009 — Decay dynamic of coarse and fine woody debris of a beech (Fagus sylvaticaL.) forest in Central Germany — Eur. J. For. Res. 128: 287–296.
- 30. Nijnik M., Slee B., Pajot G. 2010 — Opportunities and challenges for terrestrial carbon offsetting and marketing, with some implications for forestry in the UK — South-East Eur. For. 1: 69–79. DOI: http://dx.doi.org/10.15177/seefor.10-08
- 31. Nordén B., Ryberg M., Götmark F., Olausson B. 2004 — Relative importance of coarse and fine woody debris for the diversity of woodinhabiting fungi in temperate broadleaf forests — Biol. Conserv. 117: 1–10.
- 32. O'Connell A.M. 1997 — Decomposition of slash residues in thinned regrowth eucalypt forest in western Australia— J. Appl. Ecol. 34: 111–122.
- 33. Olson J.S. 1963 — Energy storage and the balance of producers and decomposers in ecological systems —Ecology, 44: 322–331.
- 34. Ostrogović M.Z. 2013 — [Carbon stocks and carbon balance of an even-aged Pedunculate Oak (Quercus roburL.) forest in Kupa river basin] — Ph.D. thesis, Croatian Forest Research Institute, 130 pp. (in Croatian, English summary).
- 35. Pérez-Corona M.E., Hernández M.C.P., Bermúdez de Castro F. 2006 — Decomposition of alder, ash, and poplar litter in a Mediterranean riverine area — Commun. Soil Sci. Plan. 37: 1111–1125.
- 36. Perruchoud D., Joos F., Fischlin A., Hajdas I., Bonani G. 1999 — Evaluating timescales of carbon turnover in temperate forest soils with radiocarbon data — Global Biogeochem. Cy. 13: 555–573.
- 37. Pettersen R.C. 1984 — The chemical composition of wood (In: The chemistry of solid wood, Ed: R. Rowell) —Am. Chem. S., USA, pp. 57–126.
- 38. SAS Institute Inc. 2011 — SAS 9.3 Software.
- 39. Schulze E.D., Beck E., Müller-Hohenstein K. 2005 — Plant ecology — Springer, Berlin/Heidelberg, 702 pp.
- 40. Schwarze F.W.M.R. 2007 — Wood decay under the microscope — Fungal Biol. Rev. 21: 133–170.
- 41. Sitch S., Smith B., Prentice I.C., Arneth A., Bondeau A., Cramer W., Kaplan J.O., Levis S., Lucht W., Sykes M.T., Thonicke K., Venevsky S. 2003 — Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model — Glob. Change Biol. 9: 161–185.
- 42. StatSoft, Inc. 2012 — STATISTICA (data analysis software system), version 11. www.statsoft.com.
- 43. Stupak I., Asikainen A., Jonsell M., Karltun E., Lunnan A., Mizaraité D., Pasanen K., Pärn H., Raulund-Rasmussen K., Röser D., Schroeder M., Varnagiryté I., Vilkriste L., Callesen I., Clarke N., Gaitnieks T., Ingerslev M., Mandre M., Ozolincius R., Saarsalmi A., Armolaitis K., Helmisaari H.-S., Indriksons A., Kairiukstis L., Katzensteiner K., Kukkola M., Ots K., Ravn H.P., Tamminen P. 2007 — Sustainable utilisation of forest biomass for energy — Possibilities and problems: Policy, legislation, certification, and recommendations and guidelines in the Nordic, Baltic, and other European countries — Biomass Bioenerg. 31: 666–684.
- 44. Thornton P.E. 2000 — User's guide for Biome-BGC, version 4.1.1 — Numerical terradynamic simulation group, School of Forestry, University of Montana, Missoula, 22 pp.
- 45. Vavřová P., Penttilä T., Laiho R. 2009 — Decomposition of scots pine fine woody debris in boreal conditions: Implications for estimating carbon pools and fluxes — Forest Ecol. Manag. 257: 401–412.
- 46. Weedon J.T., Cornwell W.K., Cornelissen J.H.C., Zanne A.E., Wirth C., Coomes D.A. 2009 — Global meta-analysis of wood decomposition rates: A role for trait variation among tree species? — Ecol. Lett. 12:45–56.
- 47. Woodall C.W., Liknes G.C. 2008 — Climatic regions as an indicator of forest coarse and fine woody debris carbon stocks in the United States — Carbon Balance Manag. 3: 5.
- 48. Wu Z., Dijkstra P., Koch GW., Peñuelas J., Hungate B.A. 2011 — Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation — Glob. Change Biol.17:927–942. doi: 10.1111/j.1365-2486.2010.02302.x
- 49. Zanne A.E., Lopez-Gonzalez G., Coomes D.A., Ilic J., Jansen S., Lewis S.L., Miller R.B., Swenson N.G., Wiemann M.C., Chave J. 2009 — Data from: Towards a worldwide wood economics spectrum — Dryad Digital Repository (Global wood density database). http://dx.doi.org/10.5061/dryad.234
- 50. Zhou G., Guan L., Wei X., Tang X., Liu S., Liu J., Zhang D., Yan J. 2008 — Factors influencing leaf litter decomposition: An intersite decomposition experiment across China — Plant Soil 311: 61–72.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8391897-2797-4649-83d6-142488356f3c