PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The performance analysis of dusty photovoltaic panel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Solar photovoltaic power is widely utilized in the energy industry. The performance of solar panels is influenced by different variables, including solar radiation, temperature, wind speed, relative humidity and the presence of haze or dirt. Outdoor solar panels are particularly susceptible to a decrease in energy efficiency due to the accumulation of dust particles in the air, which occurs as a result of natural weather conditions. The extent of dust deposition is primarily determined by factors such as the tilt angle of the panel, wind direction, cleaning frequency as well as local meteorological and geographical conditions. The dust on the solar cell glazing reduces the optical transmittance of the light beam, causing shadowing and diminishing the energy conversion productivity of the panels. Sand storms, pollution levels and snow accumulations all significantly impact the photovoltaic panel performance. These circumstances reduce the efficiency of solar panels. The experiment was carried out on two identical dust-accumulated and dust-free panels. The evaluation was carried out in two different situations on the offgrid stand-alone system: in a simulated atmosphere and in an open space during the day. The current-voltage curves have been developed for both panels at various tilt degrees. The features provide sufficient information to analyse the performance of the panels under consideration. The measurements demonstrate that as dust collects on the panel’s surface, the average output power and short circuit current decrease dramatically. The installation tilt angle affected the ratio of efficiency and average power outputs of dusty and clean panels.
Rocznik
Strony
49--68
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
  • K.R. Mangalam University, Gurugram – 122103, India
  • K.R. Mangalam University, Gurugram – 122103, India
  • K.R. Mangalam University, Gurugram – 122103, India
Bibliografia
  • [1] Hassan A.H., Rahoma U.A., Elminir H.K., Fathy A.M.: Effect of airborne dust concentration on the performance of PV modules. J. Astron. Soc. Egypt 13(2005), 1,24–38.
  • [2] Rehman S., El-Amin I.: Performance evaluation of an off-grid photovoltaic system in Saudi Arabia. Energy 46(2012), 451–458.
  • [3] Cabanillas R.E., Munguía H.: Dust accumulation effect on efficiency of Si photovoltaic modules. J. Renew. Sustain. Ener. 3(2011), 043114.
  • [4] Boyle L., Flinchpaugh H., Hannigan M.P.: Natural soiling of photovoltaic cover plates and the impact on transmission. Renew. Energ. 77(2015), 166–173.
  • [5] Bashir M.A., Ali H.M., Amber K.P., Bashir M.W., Hassan A.L.I., Imran S., Sajid M.: Performance investigation of photovoltaic modules by back surface water cooling. Therm. Sci. 1–11(2016).
  • [6] Javed W., Wubulikasimu Y., Figgis B., Guo B.: Characterization of dust accumulated on photovoltaic panels in Doha. Qatar. Sol. Energy 142(2017), 123–135.
  • [7] Adinoyi Muhammed J., Said Syed A.M.: Effect of dust accumulation on the power outputs of solar photovoltaic modules. Renew. Energ. 60(2013), 633–636.
  • [8] Mehmood U., Al-Sulaiman F.A., Yilbas B.S.: Characterization of dust collected from PV modules in the area of Dhahran, Kingdom of Saudi Arabia, and its impact on protective covers for photovoltaic applications. Sol. Energy 141(2017), 203–209.
  • [9] Darwish Z.A., Kazem H.A., Sopian K., Al-Goul M.A., Alawadhi H.: Effect of dust pollutant type on photovoltaic performance. Renew. Sust. Energ. Rev. 41(2015),735–744.
  • [10] Cabrera-Tobar A., Bullich-Massagué E., Aragüés-Peñalba M., Gomis-Bellmunt O.: Topologies for large scale photovoltaic power plants. Renew. Sust. Energ. Rev. 59(2016), 309–319.
  • [11] Sanusi Y.: The performance of amorphous silicon PV system under Harmattan dust conditions in a tropical area. Pacific J. Sci. Technol. 13(2012), 168–175.
  • [12] Kaldellis J.K., Kapsali M.: Simulating the dust effect on the energy performance of photovoltaic generators based on experimental measurements. Energy 36(2011), 8, 5154–5161
  • [13] Schill C., Brachmann S., Koehl M.: Impact of soiling on IV-curves and efficiency of PV-modules. Sol. Energy 112(2015), 259–262.
  • [14] Klugmann-Radziemska E.: Degradation of electrical performance of a crystalline photovoltaic module due to dust deposition in northern Poland. Renew. Energ. 78(2015), 418–426.
  • [15] Azouzoute A., Merrouni A.A., Garoum M.: Soiling loss of solar glass and mirror samples in the region with arid climate. Energ. Rep. 6(2020), 693–698.
  • [16] Lu H., Lu L., Wang Y.: Numerical investigation of dust pollution on a solar photovoltaic (PV) system mounted on an isolated building. Appl. Energ. 180(2016), 27–36.
  • [17] Bergin M.H., Ghoroi C., Dixit D., Schauer J.J., Shindell D.T.: Large reductions in solar energy production due to dust and particulate air pollution. Environ. Sci. Tech. Let. 4(2017), 8, 339–344.
  • [18] Al-Addous M., Dalala Z., Alawneh F., Class C.B.: Modeling and quantifying dust accumulation impact on PV module performance. Sol. Energy 194(2019), 86–102.
  • [19] Chen J., Pan G., Ouyang J., Ma J., Fu L., Zhang L.: Study on impacts of dust accumulation and rainfall on PV power reduction in East China. Energy 194(2020),116915.
  • [20] Rahman M.M., Islam M.A., Karim A.H.M.Z., Ronee A.H.: Effects of natural dust on the performance of PV panels in Bangladesh. Int. J. Mod. Edu. Comp. Sci. 4(2012),10, 26–32.
  • [21] Abdulghafor I.A., Mohannad J.M.: Design of thermoelectric radiant cooling – photovoltaic panels system in the building. Arch. Thermodyn. 43(2022), 4, 85–108.
  • [22] Mzad H, Otmani A.: Simulation of photovoltaic panel cooling beneath a single nozzle based on a configurations framework. Arch. Thermodyn. 42(2021), 1, 115–128.
  • 23] Węcel D, Ogulewicz W.: Study on the possibility of use of photovoltaic cells for the supply of electrolysers. Arch. Thermodyn. 32(2011), 4, 33–53.
  • [24] Daghsen K, Lounissi D, Bouaziz N.: A universal model for solar radiation exergy accounting: Case study of Tunisia. Arch. Thermodyn. 2(2022), 2, 97–118.
  • [25] Mathworks: Matlab, Simlink, and Stateflow User Guide (Version 5.0). Mathworks, 2020. https://www.mathworks.com/content/dam/mathworks/mathworksdot-com/solutions/mab/mab-control-algorithm-modeling-guidelines-using-matlabsimulink-and-stateflow-v5.pdf (accessed 31 May 2022).
  • [26] Tenmars TM-207: Solar Power Meter User Guide (Version 1.0). 2022. https://5.imimg.com/data5/KK/GD/MY-2169304/solar-meter-tm-207.pdf (accessed 10 Feb. 2022).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e83800aa-cdfd-4183-95a7-82cd68734838
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.