Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a research work on the process of emulsion separation by filtration-coalescence method in the presence of solid particles. A polyester PBT coalescence medium was used in experiments of water removal from diesel fuel. Apart from parameters representing the geometry and inherent properties of coalescence filters, the additional emulsion constituents such as surfactants and solid particles also affect the process. These constituent can cover fibres and they can also influence emulsion properties. It has been experimentally confirmed that contrary to surface active compounds, which stabilise the emulsion, the presence of specific solid particles decreased the system stability. If surface active compounds are present in the system, the influence of solid particles is different at the same concentration level depending on their type. The destabilization of emulsion due to the presence of Arizona dust was more pronounced. Although the presence of particles mitigated the effect of surfactants, their deposition in the filter media oppositely affected the coalescence process depending on solid type. Oleophilic iron oxide particles improved the separation efficiency of water from diesel fuel, while Arizona test dust had a negative impact on the separation process performance.
Czasopismo
Rocznik
Tom
Strony
337--–348
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego 1, 00-645 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego 1, 00-645 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego 1, 00-645 Warsaw, Poland
Bibliografia
- 1. Agarval S., von Arnim V., Stegmaier T., Planck H., Agarwal A., 2013. Role of surface wettability and roughness in emulsion separation. Sep. Purif. Technol., 107, 19–25. DOI: 10.1016/j.seppur.2013.01.001.
- 2. Bansal S., von Arnim V., Stegmaier T., Planck H., 2011. Effect of fibrous filter properties on the oil-in-wateremulsion separation and filtration performance. J. Hazard. Mat., 190, 45–50. DOI: 10.1016/j.jhazmat.2011.01.134.
- 3. Binks B.P., Clint J.H., Whitby C.P., 2005. Rheological behavior of water-in-oil emulsions stabilized by hydrophobic bentonite particles. Langmuir, 21, 5307–5316. DOI: 10.1021/la050255w.
- 4. de Folter J.W.J., van Ruijvena M.W.M, Velikov K.P., 2012. Oil-in-water Pickering emulsions stabilized by colloidal particles from the water-insoluble protein zein. Soft Matter, 8, 6807–6815. DOI: 10.1039/C2SM07417F.
- 5. de Malmazet E., Risso F., Masbernat O., PauchardV., 2015. Coalescence of contaminatedwater drops at an oil/water interface: Influence of micro-particles. Colloids Surf., A, 482, 514–528. DOI: 10.1016/j.colsurfa.2015.06.044.
- 6. Gobel J.G., Joppien G.R., 1997. Dynamic interfacial tensions of aqueous Triton X-100 solutions in contact with air, cyclohexane, n -heptane, and n –hexadecane. J. Colloid Interface Sci., 191, 30–37. DOI: 10.1006/jcis.1997.4949.
- 7. Hannisdal A., Orr R., Sjoblom J., 2007. Viscoelastic properties of crude oil components at oil-water interfaces. 1.
- 8. The effect of dilution. J. Dispersion Sci. Technol., 28, 81–93. DOI: 10.1080/01932690600992647.
- 9. Hu D., Li L., Li Y., Yang C., 2017. Restructuring the surface of polyurethane resin enforced filter media to separate surfactant stabilized oil-in-water emulsions via coalescence. Sep. Purif. Technol., 172, 59–67. DOI: 10.1016/j.seppur.2016.07.051.
- 10. Krasinski A., Sołtan Ł., Kacprzynska-Gołacka J., 2020. Effect of fiber surface modifications on the coalescence performance of polybutylene terephthalate filter media applied for the water removal from the diesel fuel. Sep. Purif. Technol., 236, 116254. DOI: 10.1016/j.seppur.2019.116254.
- 11. Krasinski A., Wierzba P., 2015. Removal of emulsified water from diesel fuel using polypropylene fibrous media modified by ionization during meltblowprocess. Sep. Sci. Technol., 50, 1541–1547. DOI: 10.1080/01496395.2014.974818.
- 12. Loglio G., Kovalchuk V., Bykov A.G., Ferrari M., Kragel J., Liggieri L., Miller R., Noskov B.A., Pandolfini P.,
- 13. Ravera F., Santini E., 2019. Interfacial dilational viscoelasticity of adsorption layers at the hydrocarbon/water interface: The fractional maxwell model. Colloids and Interfaces, 3, 66. DOI: 10.3390/colloids3040066.
- 14. Patel S.U., Chase G.G., 2014. Separation of water droplets from water-in-diesel dispersion using superhydrophobic polypropylene fibrous membranes. Sep. Purif. Technol., 126, 62–68. DOI: 10.1016/j.seppur.2014.02.009.
- 15. Ravera F., Loglio G., Kovalchuk V.I., 2010. Interfacial dilational rheology by oscillating bubble/drop methods. Curr. Opin. Colloid Interface Sci., 15, 217–228. DOI: 10.1016/j.cocis.2010.04.001.
- 16. Šecerov Sokolovic R.M., Sokolovic S.M., 2004. Effect of the nature of different polymeric fibers on steady-state bed coalescence of an oil-in-water emulsion. Ind. Eng. Chem. Res., 43, 6490–6495. DOI: 10.1021/ie049742h.
- 17. Shin C., Chase G.G., 2006. Separation of water-in-oil emulsions using glass fiber media augmented with polimer nanofibers. J. Dispersion Sci. Technol., 27, 517–522. DOI: 10.1080/01932690500374276.
- 18. Simon S., Theiler S., Knudsen A., Oye G., Sjoblom J., 2010. Rheological properties of particle-stabilized emulsions.
- 19. J. Dispersion Sci. Technol., 31, 632–640. DOI: 10.1080/01932690903218062.
- 20. Thijssen J.H.J., Vermant J., 2018. Interfacial rheology of model particles at liquid interfaces and its relation to (bicontinuous) Pickering emulsions. J. Phys.: Condens. Matter, 30, 023002. DOI: 10.1088/1361-648X/aa9c74.
- 21. WeheliyeW.H., Dong T., Angeli P., 2017. On the effect of surfactants on drop coalescence at liquid/liquid interfaces. Chem. Eng. Sci., 161, 215–227. DOI: 10.1016/j.ces.2016.12.009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8368de3-385d-4dea-9d69-9779e9ec6ca8