PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fluid–structure interaction simulation for studying hemodynamics and rupture risk of patient-specific intracranial aneurysms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The role of regional hemodynamics in intracranial aneurysms (IAs) hemodynamics and rupture risk has been widely discussed based on numerical models over the past decades. The aim of this paper is to investigate hemodynamics and rupture risk with a complicated IA model. Fluid-structure interaction (FSI) simulations were performed to quantify the hemodynamic characteristics of the established IA models. Hemodynamic parameters, including wall shear stress (WSS), flow velocity, and flow pattern, were calculated and analyzed. In this paper, the risk assessment of intracranial aneurysms focuses on the mechanical properties of blood flow and blood vessel walls. Vortex flow and concentrated impact field during blood flow play a decisive role in the rupture and development of aneurysms. The uneven distribution of wall shear stress on the vessel wall has a great influence on growth and rupture. By observing the simulation results of rigid walls, risks can be predicted efficiently and accurately. This paper focuses on the relationship between hemodynamics and rupture risk with a double intracranial aneurysms disease mode and provides a new perspective on the treatment of intracranial aneurysms.
Rocznik
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Applied Mechanics, Sichuan University (Chengdu 610065, Sichuan, China)
autor
  • College of Mechanical Engineering, Sichuan University (Chengdu 610065, Sichuan, China)
  • Department of Applied Mechanics, Sichuan University (Chengdu 610065, Sichuan, China)
autor
  • Department of Applied Mechanics, Sichuan University (Chengdu 610065, Sichuan, China)
autor
  • Department of Neurosurgery, West China Hospital, Sichuan University (Chengdu 610041, Sichuan, China)
autor
  • Department of Applied Mechanics, Sichuan University (Chengdu 610065, Sichuan, China)
Bibliografia
  • Acevedo-Bolton, G., Jou, L.-D., Dispensa, B. P., Lawton, M. T., Higashida, R. T., Martin, A. J., Saloner, D. (2006). Estimating the hemodynamic impact of interventional treatments of aneurysms: numerical simulation with experimental validation: technical case report. Neurosurgery, 59(2), E429-E430.
  • Amenta, P. S., Yadla, S., Campbell, P. G., Maltenfort, M. G., Dey, S., Ghosh, S., Gonzalez, L. F. (2012). Analysis of nonmodifiable risk factors for intracranial aneurysm rupture in a large, retrospective cohort. Neurosurgery, 70(3), 693-701.
  • Brisman, J. L., Song, J. K., & Newell, D. W. (2006). Cerebral aneurysms. New England journal of medicine, 355(9), 928-939.
  • Castro, M. A., Putman, C. M., Sheridan, M. J., & Cebral, J. R. (2009). Hemodynamic Patterns of Anterior Communicating Artery Aneurysms: A Possible Association with Rupture. American Journal of Neuroradiology, 30(2), 297. doi:10.3174/ajnr.A1323
  • Cebral, J. R., Castro, M. A., Appanaboyina, S., Putman, C. M., Millan, D., & Frangi, A. F. (2005). Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Transactions on Medical Imaging, 24(4), 457-467. doi:10.1109/TMI.2005.844159
  • Cebral, J. R., & Meng, H. (2012). Counterpoint: realizing the clinical utility of computational fluid dynamics—closing the gap. In (Vol. 33, pp. 396-398): Am Soc Neuroradiology.
  • Chaichana, T., Sun, Z., & Jewkes, J. (2013). Hemodynamic impacts of left coronary stenosis: A patient-specific analysis. Acta of Bioengineering and Biomechanics, 15(3).
  • D'Arcangelo, D., Ambrosino, V., Giannuzzo, M., Gaetano, C., & Capogrossi, M. C. (2006). Axl receptor activation mediates laminar shear stress anti-apoptotic effects in human endothelial cells. Cardiovascular research, 71(4), 754-763.
  • Fukazawa, K., Ishida, F., Umeda, Y., Miura, Y., Shimosaka, S., Matsushima, S., Suzuki, H. (2015). Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points. World neurosurgery, 83(1), 80-86.
  • Hejč l, A., Švihlová, H., Sejkorová, A., Radovnický, T., Adámek, D., Hron, J., Sameš, M. (2017). Computational fluid dynamics of a fatal ruptured anterior communicating artery aneurysm. Journal of Neurological Surgery Part A: Central European Neurosurgery, 78(06), 610-616.
  • Hoi, Y., Meng, H., Woodward, S. H., Bendok, B. R., Hanel, R. A., Guterman, L. R., & Hopkins, L. N. (2004). Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. Journal of Neurosurgery, 101(4), 676-681. doi:10.3171/jns.2004.101.4.0676
  • Isaksen, J. G., Bazilevs, Y., Kvamsdal, T., Zhang, Y., Kaspersen, J. H., Waterloo, K., Ingebrigtsen, T. (2008). Determination of Wall Tension in Cerebral Artery Aneurysms by Numerical Simulation. Stroke, 39(12), 3172-3178. doi:10.1161/STROKEAHA.107.503698
  • Ivanov, D., Dol, A., Pavlova, O., & Aristambekova, A. (2014). Modeling of human circle of Willis with and without aneurisms. Acta of Bioengineering and Biomechanics, 16(2), 121-129.
  • Ivanov, D., Dol, A., & Polienko, A. (2016). Patient-specific hemodynamics and stress-strain state of cerebral aneurysms. Acta of Bioengineering and Biomechanics, 18(2), 9-17.
  • Jiang, Y., Lu, G., Ge, L., Huang, L., Wan, H., Wan, J., & Zhang, X. (2021). Rupture point hemodynamics of intracranial aneurysms: case report and literature review. Annals of Vascular Surgery-Brief Reports and Innovations, 1(2), 100022.
  • Jou, L.-D., Wong, G., Dispensa, B., Lawton, M. T., Higashida, R. T., Young, W. L., & Saloner, D. (2005). Correlation between lumenal geometry changes and hemodynamics in fusiform intracranial aneurysms. American Journal of Neuroradiology, 26(9), 2357-2363.
  • Lee, C. J., Zhang, Y., Takao, H., Murayama, Y., & Qian, Y. (2013). The influence of elastic upstream artery length on fluid–structure interaction modeling: A comparative study using patient-specific cerebral aneurysm. Medical Engineering & Physics, 35(9), 1377-1384. doi:https://doi.org/10.1016/j.medengphy.2013.03.009
  • Li, G., Song, X., Wang, H., Liu, S., Ji, J., Guo, Y., Wang, X. (2021). Prediction of cerebral aneurysm hemodynamics with porous-Medium models of flow-diverting stents via deep learning. Frontiers in Physiology, 12, 733444.
  • Li, W., Wang, S., Tian, Z., Zhu, W., Zhang, Y., Zhang, Y., . . . Liu, J. (2020). Discrimination of intracranial aneurysm rupture status: patient-specific inflow boundary may not be a must-have condition in hemodynamic simulations. Neuroradiology, 62, 1485-1495.
  • Liu, J., Fan, J., Xiang, J., Zhang, Y., & Yang, X. (2016). Hemodynamic characteristics of large unruptured internal carotid artery aneurysms prior to rupture: a case control study. Journal of NeuroInterventional Surgery, 8(4), 367-372.
  • Medero, R., Ruedinger, K., Rutkowski, D., Johnson, K., & Roldán-Alzate, A. (2020). In vitro assessment of flow variability in an intracranial aneurysm model using 4D flow MRI and tomographic PIV. Annals of biomedical engineering, 48, 2484-2493.
  • Meng, H., Wang, Z., Hoi, Y., Gao, L., Metaxa, E., Swartz, D. D., & Kolega, J. (2007). Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke, 38(6), 1924-1931.
  • Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 32(8), 1598-1605.
  • Mo, X., Meng, Q., Yang, X., & Li, H. (2020). The impact of inflow angle on aneurysm hemodynamics: a simulation study based on patient-specific intracranial aneurysm models. Frontiers in Neurology, 11, 534096.
  • Murayama, Y., Fujimura, S., Suzuki, T., & Takao, H. (2019). Computational fluid dynamics as a risk assessment tool for aneurysm rupture. Neurosurgical focus, 47(1), E12.
  • Nixon, A. M., Gunel, M., & Sumpio, B. E. (2010). The critical role of hemodynamics in the development of cerebral vascular disease: a review. Journal of Neurosurgery, 112(6), 1240-1253.
  • Oliveira, I. L., Cardiff, P., Baccin, C. E., & Gasche, J. L. (2022). A numerical investigation of the mechanics of intracranial aneurysms walls: Assessing the influence of tissue hyperelastic laws and heterogeneous properties on the stress and stretch fields. Journal of the Mechanical Behavior of Biomedical Materials, 136, 105498. doi:https://doi.org/10.1016/j.jmbbm.2022.105498
  • Oyejide, A. J., Awonusi, A. A., & Ige, E. O. (2023). Fluid-structure interaction study of hemodynamics and its biomechanical influence on carotid artery atherosclerotic plaque deposits. Medical Engineering & Physics, 117, 103998. doi:https://doi.org/10.1016/j.medengphy.2023.103998
  • Philip, N. T., Bolem, S., Sudhir, B. J., & Patnaik, B. S. V. (2022). Hemodynamics and bio-mechanics of morphologically distinct saccular intracranial aneurysms at bifurcations: Idealised vs Patient-specific geometries. Computer Methods and Programs in Biomedicine, 227, 107237. doi:https://doi.org/10.1016/j.cmpb.2022.107237
  • Qing, W., Wang, W.-z., Fei, Z.-m., Liu, Y.-z., & Cao, Z.-m. (2009). Simulation of blood flow in intracranial ICA-pcoma aneurysm via computational fluid dymamics modeling. Journal of Hydrodynamics, Ser. B, 21(5), 583-590.
  • Qiu, X.-n., Fei, Z.-m., Zhang, J., & Cao, Z.-m. (2013). Influence of high-porosity mesh stent on hemodynamics of intracranial aneurysm: A computational study. Journal of Hydrodynamics, 25(6), 848-855.
  • Razavi, A., Shirani, E., & Sadeghi, M. (2011). Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. Journal of Biomechanics, 44(11), 2021-2030.
  • Reorowicz, P., Obidowski, D., Klosinski, P., Szubert, W., Stefanczyk, L., & Jozwik, K. (2014). Numerical simulations of the blood flow in the patient-specific arterial cerebral circle region. Journal of Biomechanics, 47(7), 1642-1651. doi:https://doi.org/10.1016/j.jbiomech.2014.02.039
  • Reymond, P., Crosetto, P., Deparis, S., Quarteroni, A., & Stergiopulos, N. (2013). Physiological simulation of blood flow in the aorta: Comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. Medical Engineering & Physics, 35(6), 784-791. doi:https://doi.org/10.1016/j.medengphy.2012.08.009
  • Rostam-Alilou, A. A., Jarrah, H. R., Zolfagharian, A., & Bodaghi, M. (2022). Fluid–structure interaction (FSI) simulation for studying the impact of atherosclerosis on hemodynamics, arterial tissue remodeling, and initiation risk of intracranial aneurysms. Biomechanics and modeling in mechanobiology, 21(5), 1393-1406.
  • Saqr, K. M., Rashad, S., Tupin, S., Niizuma, K., Hassan, T., Tominaga, T., & Ohta, M. (2020). What does computational fluid dynamics tell us about intracranial aneurysms? A meta-analysis and critical review. Journal of Cerebral Blood Flow & Metabolism, 40(5), 1021-1039.
  • Shojima, M., Oshima, M., Takagi, K., Torii, R., Nagata, K., Shirouzu, I., . . . Kirino, T. (2005). Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms. Stroke, 36(9), 1933-1938.
  • Tian, Z., Li, X., Wang, C., Feng, X., Sun, K., Tu, Y., . . . Duan, C. (2022). Association Between Aneurysmal Hemodynamics and Rupture Risk of Unruptured Intracranial Aneurysms. Frontiers in Neurology, 13.
  • Valencia, A., Morales, H., Rivera, R., Bravo, E., & Galvez, M. (2008). Blood flow dynamics in patient-specific cerebral aneurysm models: the relationship between wall shear stress and aneurysm area index. Medical Engineering & Physics, 30(3), 329-340.
  • Yi, H., Yang, Z., Johnson, M., Bramlage, L., & Ludwig, B. (2022). Developing an in vitro validated 3D in silico internal carotid artery sidewall aneurysm model. Frontiers in Physiology, 13, 1024590.
Uwagi
Brak numeracji stron
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e830ee39-2a98-4ea8-8777-45f9a70ba7c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.