PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variations of tree ring width and chemical composition of wood of pine growing in the area nearby chemical factories

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study reports the variation of tree-ring widths and annual variation of concentration of metals (Na, Mg, Fe, Ni, Cu, Zn, Pb) in pine growing nearby chemical factories. The conifers (Pinus silvestris L.) investigated in this study covered the time span from 1920s to 2010 AD. Tree-ring widths were measured, dated and rechecked using the COFECHA. Radial trace-element profiles were determined by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. The combined usage of tree ring width and chemical composition of wood provides historic records of anthropogenic impact on the environment and allows identifying the behavior adaptation of trees to the pollution. Data of pine tree cores collected from the sites nearby chemical factories show increasing levels of pollution linked to the increasing of industrial activities in Poland and subsequent dust fallout around the site. This study evidences that tree rings can be used as archives of past environmental contamination.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Strony
226--239
Opis fizyczny
Bibliogr. 82 poz., rys.
Twórcy
autor
  • Konarskiego 22B, 44-100, Gliwice, Poland
  • Al. 20 Listopada 46, 31-425, Kraków, Poland
autor
  • Leuvensesteenweg 13, B – 3080, Tervuren, Belgium
autor
  • Allée du six Août, 14, B-4000, Liege (Sart Tilman), France
autor
  • Konarskiego 22B, 44-100, Gliwice, Poland
autor
  • Allée du six Août, 14, B-4000, Liege (Sart Tilman), France
Bibliografia
  • 1. Adriano DC, 2001. Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals,second ed. Springer, USA.
  • 2. Alloway BJ and Ayres DC, 1997. Chemical principles of environment pollution, second ed. Blackie Academic & Professional, London.
  • 3. Baath E, 1989. Effects of heavy metals in soil on microbial processes and population (a review). Water Air Soil Pollution47: 335–379.
  • 4. Baltrnait E and Butkus D, 2007. Transport of heavy metals from soil to Pinus sylvestris L. and Betula pendula trees.Ekologija53(1): 29–36.5.
  • 5. Bascietto M, Cherubini P, Scarascia-Mugnozza G, 2004. Tree rings from a European beech forest chronosequence are useful for detecting growth trends and carbon sequestration. Canadian Journal of Forest Research34: 481–492.
  • 6. Battipaglia G, Saurer M, Cherubini P, Siegwolf RTW and Cotrufo MF, 2009. Tree rings indicate different drought resistance of a native (Abies alba Mill.) and a nonnative (Picea abies (L.) Karst.) species co-occurring at a dry site in Southern Italy.Forest Ecology and Management257: 820–828.
  • 7. Beramendi-Orosco LE, Rodriguez-Estrada ML, Morton-Bermea O, Romero FM, Gonzalez-Hernandez G, Hernandez-Alvarez E, 2013. Correlations between metals in tree-rings of Prosopis julifora as indicators of sources of heavy metal contamination. Applied Geochemistry39: 78–84.
  • 8. Boden TA, Marland G, Andres RJ, 2016. Global, Regional, and National Fossil-Fuel CO2Emissions.
  • 9. Bošela M, Petráš R, Sitková Z, Priwitzer T, Pajtik J, Hlavatá H, Sedmák R and Tobin B, 2014. Possible causes of the rapid increase in the radial increment of silver fir in the Western Carpathians. Environmental Pollution184: 211–221.
  • 10. Breymeyer A, 1998. Transect Studies on Pine Forests Along Parallel 52°North, 12–32°East and Along a Pollution Gradient in Poland: General Assumptions, USDA Forest Service Gen. Tech. Rep.PSW-GTR-166.
  • 11. Briffa K and Jones P, 1992. Basic Chronology Statistics and Assessment. In: Cook ER, Kairiukstis LA. (eds.) Methods of Dendrochronology. Springer-Science and Business Media B. V., pp. 137–152.
  • 12. Chaney RL, Brown SL, Stuczynski TI, Daniels WL, Henry CL, Li Y, Siebielec G, Malik M, Angle JS, Ryan JA and Compton H, 2000. Risk assessment and remediation of soils contaminated by mining and smelting of lead, zinc, and cadmium.Revista internacional de contaminación ambiental16:175–192.
  • 13. Chaney RL and Oliver DP, 1996. Sources, potential adverse effects and remediation of agricultural soil contaminants.Contaminants and the Soil Environment in the Australasia-Pacific Region, 323–359.
  • 14. Crecente-Campo F, Soares P, Tomé M and Diéguez-Aranda U, 2010. Modelling annual individual-tree growth and mortality of Scots pine with data obtained at irregular measurement intervals and containing missing observations. Forest Ecology and Management260: 1965–1974.
  • 15. Cutter BE and Guyette RP, 1993. Factors affecting species choice for dendrochemistry studies. Journal of Environmental Quality22: 611–619.
  • 16. Danek M, 2007. The influence of industry on Scots pine stands in the south-eastern part of the Silesia-Kraków Upland (Poland) on the basis of dendrochronological analysis. Water, Air and Soil Pollution18: 265–277.
  • 17. Danesino C, 2009. Environmental indicators for heavy metals pollution: soils and higher plants Cecilia. Scientifica Acta3(2): 23–26.
  • 18. De Vries W, Klap JM and Erisman JW, 2000. Effects of environmental stress on forest crown condition in Europe. Part I: hypotheses and approach to the study. Water, Air and Soil Pollution119: 317–333.
  • 19. Dmuchowski W and Bytnerowicz A, 2009. Long-term (1992–2004) record of lead, cadmium, and zinc air contamination in Warsaw, Poland: Determination by chemical analysis of moss bags and leaves of Crimean linden. Environmental Pollution, 157(12): 3413–3421.
  • 20. Dogan Y, Durkan N and Baslar N, 2007. Trace element pollution biomonitoring using the bark of Pinus brutia(Turkish red pine) in the western Anatolian part of Turkey. Trace Element and Electrolytes24: 146–150.
  • 21. Eckstein D and Schweingruber F, 2009. Dendrochronologia — A mirror for 25 years of tree-ring research and a sensor for promising topics. Dendrochronologia27: 7–13.
  • 22. El-Hasan T, Al-Omari H, Jiries A and Al-Nasir F, 2002. Cypress tree (Cupressus semervirens L.) bark as an indicator for heavy metal pollution in the atmosphere of Amman City, Jordan. Environment International28: 513–519.
  • 23. Elling W, Dittmar C, Pfaffelmoser K and Rötzer T, 2009. Dendroecological assessment of the complex causes of decline and recovery of the growth of silver fir (Abies alba Mill.) in Southern Germany. Forest Ecology and Management257: 1175–1187.
  • 24. Fritts HC, 1976. Tree Rings and Climate. Acad. Press, London.
  • 25. Gericke S, 1943. The effect of the trace element chromium in plant growth. Bodenkunde u. Pflanzener-nahrurg33: 114–129.
  • 26. Hall GS, Yamaguchi DK and Rettberg TM, 1990. Multielemental Analyses Of Tree Rings By Inductively Coupled Plasma Mass Spectrometry. Journal of Radioanalytical and Nuclear Chemistry146(4): 255–265.
  • 27. Herbert A, 1907. The toxicity of the salt of chromium, aluminium and magnesium in comparison with similar properties of some rare metals. Bulletin de la Société Chimique de France, I: 1026–1032.
  • 28. Hoffmann E, Lüdke C, Scholze H and Stephanowitz H, 1994. Analytical investigations of tree rings by laser ablation ICP-MS. Fresenius’ Journal of Analytical Chemistry350(4–5): 253–259.
  • 29. Holmes RL, 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull43: 69–78.
  • 30. Jelaska LS, Blanusa M, Durbesic P and Jelaska SD, 2007. Heavy metal concentrations in ground beetles, leaf litter, and soil of a forest ecosystem. Ecotoxicology and Environmental Safety66: 74–81.
  • 31. Juknys R, Augustaitis A, Vencloviene J, Kliučius A, Vitas A, Bartkevičius E and Jurkonis N, 2014. Dynamic response of tree growth to changing environmental pollution. European Journal Forest Research133: 713–724.
  • 32. Juknys R, Vencloviene J, Stravinskiene V, Augustaitis A, Bartkevičius E, 2003. Scots pine (Pinus sylvestris) growth and condition in polluted environment: from decline to recovery. Environmental Pollution125: 205–212 .
  • 33. Kabata-Pendias A, 2011. Trace Elements in Soils and Plants 4th ed. - Boca Raton, FL : CRC Press.
  • 34. Kabata-Pendias A and Pendias H, 1993. Biogeochemia pierwiastków śladowych (Biogeochemistry of trace elements). PWN, Warszawa. In Polish.
  • 35. Kabata-Pendias A and Pendias H, 1979. Pierwiastki śladowe w środowisku biologicznym. (Trace elements in the biological environment). Wyd. Geologiczne, Warszawa. In Polish.
  • 36. Kienast F, 1985. Tree ring analysis, forest damage and air pollution in the Swiss Rhone Valley. Land use Policy2: 74–77.
  • 37. Krąpiec M and Szychowska-Krąpiec E, 2001. Tree–ring estimation of the effect of industrial pollution on pine (Pinus sylvestris) and fir (Abies alba) in the Ojców National Park (Southern Poland). Nature Conservation58: 33–42.
  • 38. Krause C, Gionest F, Morin H and MacLean DA, 2003. Temporal relations between defoliation caused by spruce budworm (Choristoneura fumiferana Clem.) and growth of balsam fir (Abies balsamea (L.) Mill.). Dendrochronologia21: 23–31.
  • 39. Kuang YW, Wen DZ, Zhou GY, Chu GW, Sun FF and Li J, 2008. Reconstruction of soil pH by dendrochemistry of Masson pine at two forested sites in the Pearl River Delta, South China. Annals of Forest Science65: 1–7.
  • 40. Kusza G, Ciesielczyk T and Gołuchowska B, 2009. Heavy metal content in soils from the adjacent areas of cement plants in the City of Opole. Ochrona Środowiska i Zasobów Naturalnych40: 70–75.
  • 41. Leonelli G, Battipaglia G, Cherubini P, Morra di Cella U and Pelfini M, 2011. Chemical elements and heavy metals in european larch tree rings from remote and polluted sites in the european alps. Geografia Fisica e Dinamica Quaternaria24: 195–206.
  • 42. Lombardo M, Melatia RM and Orecchio S, 2001. Assessment of the quality of the air in the city of Palermo through chemical and cell analyses on Pinus needles. Atmospheric Environment35: 6435–6445.
  • 43. Magnavita, 1989. Inquinamento ambientale da metalli pesanti e rischi per la salute. (Environmental pollution from heavy metals and health hazards). Ambiente, sicurezza e lavoro11(12).
  • 44. Malik I, Danek M, Marchwińska-Wyrwał E, Danek T, Wistuba M and Krąpiec M, 2012. Scots pine (Pinus sylvestrisL.) growth suppression and adverse effects on human health due to air pollution in the Upper Silesian Industrial District (USID), Southern Poland. Water, Air and Soil Pollution223: 3345–3364.
  • 45. McLaughlin SB, Shortle WC and Smith KT, 2002. Dendroecological applications in air pollution and environmental chemistry: research needs. Dendrochronologia20(1): 133–157.
  • 46. Mengel K and Kirkby EA, 1982. Principles of plant nutrition. Int. Potash Institue, Bern, Switzerland.
  • 47. Meyer FD, 1998–1999. Pointer years analysis in dendroecology: a comparison of methods. Dendrochronologia16–17: 193–204.
  • 48. Mielikäinen K and Sennov S, 1996. Growth trends of forests in Finland and North-Western Russia. In: Spiecker, H, Mielikäinen, K, Kohl, M. and Skovsgaard J. (eds.) Growth trends in European Forests: studies from 12 countries. Springer Verlag Berlin Heidelberg New York, pp. 19–27.
  • 49. Myre R and Camiré C, 1994. Distribution de P, K, Ca, Mg, Mn et Zn dans la tige des mélčzes européen et laricin. (Distribution of P, K, Ca, Mg, Mn and Zn in the stem of European and Laricin mussels). Annals of Forest Science51: 121–134.
  • 50. Nabais C, Freitas HJ and Hagemeyer J, 1999. Dendroanalysis: a tool for biomonitoring environmental pollution? Science of The Total Environment232(1–2): 33–37.
  • 51. Nowak DJ, Crane DE and Stevens JC, 2006. Air pollution removal by urban trees and shrubs in the United States. Urban Forestry and Urban Greening4(3–4): 115–123.
  • 52. Padilla KL and Anderson KA, 2002. Trace element concentration in tree-rings biomonitoring centuries of environmental change. Chemosphere49: 575–585.
  • 53. Parn H and Mandre M, 2011. Dendrochronological analysis of the growth and growth–climate relationships of conifers in the region of alkaline dust deposition. Forest Ecology and Management262(2): 88–94.
  • 54. Pazdur A, Kuc T, Pawełczyk S, Piotrowska N, Sensuła BM and Różański K, 2013. Carbon Isotope Composition of Atmospheric Carbon Dioxide in Southern Poland: Imprint of Anthropogenic CO2 Emissions in Regional Biosphere.Radiocarbon55(2–3): 848–864.
  • 55. Pearson CL, Manning SW, Coleman M and Jarvis K, 2006. A dendrochemical study of Pinus sylvestris from Siljansfors Experimental Forest, central Sweden. Applied Geochemistry21(10): 1681–1691.
  • 56. Pedersen BS, 1998. The role of stress in the mortality of Midwestern oaks as indicated by growth prior to death. Ecology79: 79–93.
  • 57. Prasad MNV, Sajwan KS and Naidu R, 2006. Trace elements in the environment: biogeochemistry, biotechnology, and bioremediation. USA: CRS Press. 726.
  • 58. Prohaska T, Stadlbauer C, Wimmer R, Stingeder G, Latkoczy Ch, Hoffmann E, Stephanowitz H, 1998. Investigation of element variability in tree rings of young Norway spruce by laser-ablation-ICPMS, The Science of the Total Environment219: 29–39.
  • 59. Rydval M and Wilson R, 2012. The impact of industrial SO2pollution on north Bohemia conifers. Water Air Soil Pollution223: 5727–5744.
  • 60. Schweingruber FH, 1986. Abrupt growth changes in conifers. IAWA Bulletin7(4): 277–283.
  • 61. Schweingruber FH, Eckstein D, Serre-Bachet F and Bräker OU, 1990. Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia8: 9–38.
  • 62. Sensuła B, 2015. Spatial and Short-Temporal Variability of δ13C and δ15N and Water-Use Efficiency in Pine Needles of the Three Forests Along the Most Industrialized Part of Poland. Water, Air, Soil Pollution226: 362.
  • 63. Sensuła B, 2016a. δ13C and water use efficiency in the glucose of annual pine tree-rings as ecological indicators of the forests in the most industrialized part of Poland. Water, Air and Soil Pollution227(2): 68.
  • 64. Sensuła B, 2016b. The Impact of Climate, Sulfur Dioxide, and Industrial Dust on δ18O and δ13C in Glucose from Pine Tree Rings Growing in an Industrialized Area in the Southern Part of Poland. Water, Air, Soil Pollut227(4): 106, .
  • 65. Sensuła B, Opała M, Wilczyński S, Pawełczyk S, 2015a. Long- and short-term incremental response of Pinus sylvestris L. from industrial area nearby steelworks in Silesian Upland, Poland. Dendrochronologia36: 1–12.
  • 66. Sensuła B and Pazdur A, 2013a. Influence of climate change on carbon and oxygen isotope fractionation factors between glucose and α-cellulose of pine wood. Geochronometria40(2): 145–152.
  • 67. Sensuła B and Pazdur A, 2013b. Stable carbon isotopes of glucose received from pine tree-rings as bioindicators of local industrial emission of CO2in Niepolomice Forest (1950–2000). Isotopes in Environmental and Health Studies49(4): 532–541.
  • 68. Sensuła BM, Pazdur A and Marais MF, 2011b. First application of mass spectrometry and gas chromatography in investigation of α-cellulose hydrolysates: the influence of climate changes on glucose molecules in pine tree-rings. Rapid Communications in Mass Spectrometry25(4): 489–494.
  • 69. Sensuła BM and Pazdur A, 2012. Zapis współczesnych zmian klimatu oraz emisji CO2w zmianach składu izotopowego węgla (δ13C) w glukozie i α-celulozie z rocznych przyrostów sosny. Record of contemporary climate change and CO2emissions in the changes in the isotopic composition of carbon (δ13C) of glucose and α-cellulose with annual growth of pine. Studia i Materiały CEPL w Rogowie1(30): 218–227.
  • 70. Sensuła BM, Pazdur A, Bickerton J and Derrick PJ, 2011a. Probing palaeoclimatology through quantitation by mass spectrometry of the products of enzyme hydrolysis of α-cellulose. Cellulose18(2): 461–468.
  • 71. Sensuła B and Wilczyński S, 2017. Climatic signals in tree-ring width and stable isotopes composition of Pinus sylvestris L. growing in the industrialized area nearby Kędzierzyn-Koźle. Geochronometria44: 240–255.
  • 72. Sensuła B, Wilczynski S and Opała M, 2015b. Tree growth and climate relationship: Dynamics of Scots pine (Pinus sylvestris L.) growing in the near-source region of the combined heat and power plant during the development of the pro-ecological strategy in Poland. Water, Air and Soil Pollution226(7): 220.
  • 73. Seregin IV and Ivanov VB, 2000. Physiological Aspects of Cadmium and Lead Toxic Effects on Higher Plants. Russian Journal of Plant Physiology48: 523–544.
  • 74. Shotyk W and Le Roux G, 2005. Biogeochemistry and cycling of lead. Metal Ions in Biological Systems43: 239–275.
  • 75. Siklosy Z, Kern Z, Demeny A, Pilet S, Leel-Ossy S, Lin K, Shen C.-C, Szeles E and Breitner D, 2011. Speleothems and pine trees as sensitive indicators of environmental pollution—a case study of the effect of uranium-ore mining in Hungary.Applied Geochemistry26: 666–678.
  • 76. Swetnam TW and Lynch AM, 1993. Multicentury, regional-scale patterns of western spruce budworm outbreaks.Ecological Monographs63: 399–424.
  • 77. Tommasini S, Davies GR and Elliott TR, 2000. Lead isotope composition of tree rings as bio-geochemical tracers of heavy metal pollution: a reconnaissance study from Firenze, Italy. Applied Geochemistry15(7): 891–900.
  • 78. Tuna G, Ozgunerge Falay E, Altiok H, Kara M, Dumanoglu Y, Bayram A, Tolunay D, Elbir T and Odabasi M, 2013. Investigation of Spatial Variation of Air Pollution around an Industrial Region Using Trace Elements in Tree Components.International Journal of Chemical, Environmental & Biological Sciences1(2): 2320–4087.
  • 79. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH and Tilman GD, 1997. Technical Report: Human Alteration of the Global Nitrogen Cycle: Sources and Consequences. Ecological Applications7: 737–750.
  • 80. Watmough SA and Hutchinson TC, 1996. Analysis of tree rings using inductively coupled plasma mass spectrometry to record fluctuations in a metal pollution episode, Environmental Pollution93(1): 93–102.
  • 81. Wigley TML, Briffa KR and Jones PD, 1984. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. Journal of Climate and Applied Meteorology 23: 201–213.
  • 82. Wilczyński S, 2006. The variation of tree-ring widths of Scots pine (Pinus sylvestrisL.) affected by air pollution. European Journal of Forest Research125: 213–219.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e82edac0-50f7-4a78-a23f-d2bb501b5c2a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.