PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Combined effect of carbonation and chloride aggression: degradation of reinforced concrete structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Corrosion reinforcement marine hydraulic structures due to chloride aggression and carboniza-tion of concrete leads to a sharp decrease in the safety of the structure. The steel reinforcement will be subjected to a so-called depassivation process, once the chloride concentration on surface exceeds a certain threshold concentration, or the pH value in the protective layer of concrete de-creases to a threshold value due to carbonation. Electrochemical reactions begin to occur with the formation of corrosion products with the penetration of oxygen on the steel reinforcement surface. This leads to cracking of the protective layer of concrete. It should also be taken into account that, due to corrosion mechanisms, the cross-sectional area of the reinforcement also decreases. The article suggests a method for predicting the complex degradation of reinforced concrete structures, taking into account various mechanisms of corrosion wear, which will allow developing effective ways to improve the durability and maintainability of structures operated in the marine environment.
Rocznik
Tom
Strony
78--86
Opis fizyczny
Bibliogr. 24 poz., wykr., tab., rys.
Twórcy
autor
  • Far Eastern Federal University (Vladivostok, Russia)
autor
  • Far Eastern Federal University (Vladivostok, Russia)
  • Belarussian national technical university (Minsk, Republic of Belarus)
  • Belarussian national technical university (Minsk, Republic of Belarus)
Bibliografia
  • 1. Алексеев, С. Н. Долговечность железобетона в агрессивных средах / С. Н. Алексеев, Ф. М. Иванов, С. Модры, П. Шиссль. – М.: Стройиздат, 1990. 320 с.
  • 2. Алексеев, С. Н. Коррозионная стойкость железобетонных конструкций в агрессивной производственной среде / С. Н. Алексеев, Н. К. Розенталь. – М.: Стройиздат, 1976. 205 с.
  • 3. Расчет срока службы железобетонных конструкций в условиях коррозии карбонизации. Перспективы развития новых технологий в строительстве и подготовке инженерных кадров: сб. науч. ст. / Гродн. гос. ун-т им. Я. Купалы; редкол.: Т. М. Пецольд (отв. ред.) [и др.] / О. Ю. Чернякевич, С. Н. Леонович. – Гродно: ГрГУ, 2010. С. 369–375.
  • 4. Bazant Z.P., Physical model for steel corrosion in concrete sea structurestheory // J Struct. Div. ASCE 105 (ST6), 1979:1137–1153.
  • 5. Andrade C., Prieto M., Tanner P. et al. Testing and modelling chloride penetration into con-crete // Constr. Build. Mater. 39, 2011:9–18.
  • 6. Apostolopoulos C., Papadakis V.,Consequences of steel corrosion on the ductility properties of reinforcement bar // Constr. Build. Mater. 22 (12), 2008:2316–2324.
  • 7. Yuan C., Niu D., Luo D. Effect of carbonation on chloride diffusion in fly ash concrete // Comput. Concr. 5 (4), 2012:312–316.
  • 8. Caims J., State of the art report on bond of corroded reinforcement // Tech. report ceb-tg-2/5, 1998.
  • 9. Cao C., Cheung M. Non-uniform rust expansion for chloride-induced pitting corrosion in RC structures // Constr. Build. Mater. 51, 2014:75–81.
  • 10. Ho D.W.S., Lewis R.K. Carbonation of concrete and its prediction // Cem. Concr. Res. 17, 1987:489–504.
  • 11. Glass G., Buenfeld N. The influence of chloride binding on the chloride induced
  • 12. Hans B. Corrosion in Reinforced Concrete Structures. Woodhead Publishing Limited, England, 2005.
  • 13. Yoon I. Deterioration of concrete due to combined reaction of carbonation and chloride penetration: experimental study. Key Eng. Mater. 348–349, 2007:729–732.
  • 14. Yoon I. Simple approach to calculate chloride diffusivity of concrete considering carbon-ation // Comput. Concr. 6 (1), 2009:1–18.
  • 15. Backus J., Mcpolin D., Basheer M. et al. Exposure of mortars to cyclic chloride ingress and carbonation // Adv. Cem. Res., 25 (1), 2013:3–11.
  • 16. Ozbolt J., Balabanic G., Kuster M. 3D numerical modelling of steel corrosion in concrete structures // Corros. Sc., 53(12), 2011:4166–4177.
  • 17. Lee M., Jung S., Oh B. Effects of carbonation on chloride penetration in concrete // ACI Mater. J., 110 (5), 2013:559–566.
  • 18. Chindaprasirt P., Rukzon S., Sirivivatnanon V. Effect of carbon dioxide on chloride pene-tration and chloride ion diffusion coefficient of blended portland cement mortar // Constr. Build. Mater., 22(7), 2008:1701–1707.
  • 19. Rahman M., Al-Kutti W., Shazali M., Baluch M., Simulation of chloride migration in compression-induced damage in concrete // J. Mater. Civil Eng. ASCE, 24 (7), 2012:789–796.
  • 20. Aveldano R., Ortega N. Behavior of concrete elements subjected to corrosion in their compressed or tensed reinforcement // Constr. Build. Mater., 38, 2013:822–828.
  • 21. Huang T. The experimental research on the interaction between concrete carbonation and chloride ingress under loading: MSc thesis, Zhejiang University, 2013.
  • 22. Wan X., Wittmann F., Zhao T., Fan H. Chloride content and pH value in the pore solu-tion of concrete under carbonation // J. Zhejiang Univ. Sc., 4(1), 2013:71–78.
  • 23. Zhu X., Goangseup Z. Combined effect of carbonation and chloride ingress in concrete // Construction and Building Mater., 2016.
  • 24. Baryłka, A. „Issue of building structures necessary for the purposesof state security and defence in the provisions of the act – on spatial planning and development.” IBOA 2
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e82ce090-d0b3-4aa4-af3a-863b8075224d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.