PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of the preparation process stages of the bioink compositions based on sodium alginate and gelatin to improve the viability of biological material contained in hydrogel 3d printouts

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Currently developing on a large scale, the opportunities for 3D printing represent more and more perspective solutions in the area of tissue engineering and personalized medicine. Due to their ability to reproduce the natural extracellular matrix and unique properties, hydrogels are popularly used materials to produce bioinks designated for 3D printing. Today, solutions based on sodium alginate and gelatin are frequently used compositions for this purpose. The high viability of the cells incorporated into bioink is the key parameter determining the application opportunities of printed structures. The parameters of the process used for the preparation of hydrogel compositions may have a direct impact on the viability of the cells incorporated within the printed structure. This study aims to develop a protocol for the preparation of hydrogel materials based on alginate and gelatin, providing the highest viability of the model osteoblast-like cell line Saos-2 incorporated directly into the bioink before the 3D bioprinting process. In the scope of this study, the analyzed process parameters of the preparation of the hydrogel bioinks are the method of combination of a polymer solution with biological material, the applied concentration, the cross-linking solution, and also the waiting time of the prepared hydrogel bioink for the 3D printing process. A key aspect of the study is the evaluation of the influence of 3D printing on changes in the survival rate of biological material directly after the manufacturing process and after individual incubation periods of the printouts in conditions reflecting the body’s environment.
Rocznik
Strony
7--16
Opis fizyczny
Bibliogr. 34 poz., rys., wykr., zdj.
Twórcy
  • Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland
  • Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland
  • Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland
  • Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland
Bibliografia
  • [1] Pietryga K.: Hydrożele. in Błażewicz S., Marciniak J.: Monografia Inżynieria Biomedyczna Podstawy i Zastosowania Tom 4. Biomateriały., Akdemicka Oficyna Wydawnicza EXIT, Warszawa 2016, 404-416.
  • [2] Bahram M., Mohseni N., Moghtader M.: An Introduction to Hydrogels and Some Recent Applications., in Majee S.B.: Emerging Concepts in Analysis and Applications of Hydrogels, IntechOpen (2016) 137-144.
  • [3] Wichterle O., Lím D.: Hydrophilic gels for biological use. Nature 185 (1960) 117-118.
  • [4] Kopeĉek J.: Hydrogels: From soft contact lenses and implants to self-assembled nanomaterials. Journal of Polymer Science, Part A: Polymer Chemistry 47 (2009) 5929-5946.
  • [5] Aswathy S.H., Narendrakumar U., Manjubala I.: Commercial hydrogels for biomedical applications. Heliyon 6 (2020) e03719.
  • [6] Ahmed E.M.: Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research 6 (2015) 105-121.
  • [7] Łabowska M.B., Cierluk K., Jankowska A.M., Kulbacka J., Detyna J., Michalak I.: A review on the adaption of alginate-gelatin hydrogels for 3D cultures and bioprinting. Materials 14 (2021) 858.
  • [8] Bian L.: Functional hydrogel bioink, a key challenge of 3D cellular bioprinting. APL Bioengineering 4 (2020) 3-6.
  • [9] Unagolla J.M., Jayasuriya A.C.: Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Applied Materials Today 18 (2020) 100479.
  • [10] Mandrycky C., Wang Z., Kim K., Kim D.H.: 3D bioprinting for engineering complex tissues. Biotechnology Advances, 34 (2016) 422-434.
  • [11] Nelson C., Tuladhar S., Launen L., Habib A.: 3D bio-printability of hybrid pre-crosslinked hydrogels. International Journal of Molecular Sciences 22 (2021) 13481.
  • [12] Pawar S.N., Edgar K.J.: Alginate derivatization: A review of chemistry, properties and applications. Biomaterials 33 (2012) 3279-3305.
  • [13] Ahearne M.: Introduction to cell-hydrogel mechanosensing. Interface Focus 4 (2014) 20130038.
  • [14] Neves M.I., Moroni L., Barrias C.C.: Modulating Alginate Hydrogels for Improved Biological Performance as Cellular 3D Microenvironments. Frontiers in Bioengineering and Biotechnology 8 (2020) 665.
  • [15] Abasalizadeh F. Moghaddam S.V., Alizadeh E., Akbari E., Kashani E., Fazljou S., Torbati, M., Akbarzadeh A.: Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. Journal of Biological Engineering 14:8 (2020).
  • [16] Jia J., Richards D.J., Pollard S., Tan Y., Rodriguez J., Visconti R.P., Trusk T.C., Yost M. J., Yao H., Markwald R.R., Mei Y.: Engineering alginate as bioink for bioprinting. Acta Biomaterialia 10 (2014) 4323-4331.
  • [17] Sarker B., Singh R., Silva R., Roether J.A., Kaschta J., Detsch R., Schubert D.W., Cicha I., Boccaccini A.R.: Evaluation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogel. PLoS ONE 9 (2014) e107952.
  • [18] Panwar A., Tan L.P.: Current status of bioinks for micro-extrusion- based 3D bioprinting. Molecules 21 (2016) 685.
  • [19] Wang X., Ao Q., Tian X., Fan J., Tong H., Hou W., Bai S.: Gelatin- -based hydrogels for organ 3D bioprinting. Polymers 9 (2017) 401.
  • [20] Zhang J., Wehrle E., Vetsch J.R., Paul G.R., Rubert M., Müller R.: Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology. Biomedical Materials 14 (2019) 065009.
  • [21] Lee K.Y., Mooney D.J.: Alginate: Properties and biomedical applications. Progress in Polymer Science 37 (2012) 106-126.
  • [22] European Committee for Standardization, International Standard ISO 10993-5:2009 Biological evaluation of medical devices - Part 5: Tests for in vitro cytotoxicity. Polski Komitet Normalizacyjny, 2009.
  • [23] Cao N., Chen X.B., Schreyer D.J.: Influence of Calcium Ions on Cell Survival and Proliferation in the Context of an Alginate Hydrogel. ISRN Chemical Engineering (2012) 1-9.
  • [24] GhavamiNejad A., Ashammakhi N., Wu X.Y., Khademhosseini A. Crosslinking Strategies for 3D Bioprinting of Polymeric Hydrogels. Small 16 (2020) e2002931.
  • [25] Fischer L., Nosratlo M., Hast K., Karakaya E., Ströhlein N., Esser T.U., Gerum R., Richter S., Engel F., Detsch R., Fabry B., Thievessen I.: Calcium supplementation of bioinks reduces shear stress-induced cell damage during bioprinting. Biofabrication 14 (2022) 045005.
  • [26] Lee K.Y., Rowley J.A., Eiselt P., Moy E. M., Bouhadir K.H., Mooney D.J.: Controlling Mechanical and Swelling Properties of Alginate Hydrogels Independently by Cross-Linker Type and Cross- -Linking Density. Macromolecules 33 (2000) 4291-4294.
  • [27] Dubbin K., Tabet A., Heilshorn S.C.: Quantitative criteria to benchmark new and existing bio-inks for cell compatibility. Biofabrication 9 (2017) 044102.
  • [28] Chen Y., Xiong X., Liu X., Cui R., Wang C., Zhao G., Zhi W., Lu M., Duan K., Weng J., Qu S., Ge J.: 3D Bioprinting of shear- -thinning hybrid bioinks with excellent bioactivity derived from gellan/ alginate and thixotropic magnesium phosphate-based gels. Journal of Materials Chemistry B, 8 (2020) 5500-5514.
  • [29] Li H., Tan Y.J., Leong K.F., Li L.: 3D Bioprinting of Highly Thixotropic Alginate/Methylcellulose Hydrogel with Strong Interface Bonding. ACS Applied Materials & Interfaces. 9 (2017) 20086-20097.
  • [30] Koch F., Tröndle K., Finkenzeller G., Zengerle R., Zimmermann S., Koltay P.: Generic method of printing window adjustment for extrusion-based 3D-bioprinting to maintain high viability of mesenchymal stem cells in an alginate-gelatin hydrogel. Bioprinting (2020) e00094.
  • [31] Ouyang L., Yao R., Zhao Y., Sun W.: Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication 8 (2016) 035020.
  • [32] Bociaga D., Bartniak M., Grabarczyk J., Przybyszewska K.: Sodium Alginate/Gelatine Hydrogels for Direct Bioprinting - The Effect of Composition Selection and Applied Solvents on the Bioink Properties. Materials 12 (2019) 2669.
  • [33] Giuseppe M.D., Law N., Webb B., A Macrae R., Liew L.J., Sercombe T.B., Dilley R. J., Doyle B.J.: Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. Journal of the Mechanical Behavior of Biomedical Materials 79 (2018) 150-157.
  • [34] Zhang B., Gao L., Gu L., Yang H, Luo Y., Ma L.: High-resolution 3D Bioprinting System for Fabricating Cell-laden Hydrogel Scaffolds with High Cellular Activities. Procedia CIRP 65 (2017) 219-224.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e82c0278-efd7-4cb7-8177-1e335b443e11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.