PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of polymer composites with plant reinforcement used in machine and aircraft environmental conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plant reinforced composites are more widely introduced in the automotive or construction industry. Due to good thermal and acoustic insulation, low weight, economical and ecological benefits and limitations resulting mostly from low mechanical strength, they are used primarily as elements, which do not carry heavy loads. Yet, they perform decorative and insulating functions. Expanding the spectrum of usage is connected with analysing properties of these materials in various application conditions. The following article presents results of static tensile tests of composites reinforced with jute, linen and cotton used in changeable environmental conditions. The significance of influence exerted by such factors as water, hydraulic oil, technical lubricant and conditions of moderate climate were evaluated. Taking into account the potential possibilities of using composites with natural reinforcement in aircraft construction, e.g. in helicopters, the influence exerted by direct impact of aviation fuel were tested. It was concluded that different application conditions subject to research do not exert an identical influence on tested composites. Statistically significant influence on the change of tensile strength is exerted while application of cotton composites in water. Composites with jute lose their properties during usage in autumn moderate climate and in hydraulic oil. Conversely, composites reinforced with linen react negatively to the environment of technical lubricant and aviation fuel.
Twórcy
autor
  • Polish Air Force Academy Dywizjonu 303 Street 35, 08-521 Deblin, Poland tel.: +48 261517423, fax: +48 261517417
autor
  • Polish Air Force Academy Dywizjonu 303 Street 35, 08-521 Deblin, Poland tel.: +48 261517423, fax: +48 261517417
Bibliografia
  • [1] Fan, M., Naughton, A., Mechanisms of thermal decomposition of natural fibre composites, Composites: Part B; Vol. 88, pp. 1-10, 2016.
  • [2] Faruk, O., Bledzki, A.K., Fink, H.P., Sain, M., Biocomposites reinforced with natural fibres: 2000-2010, Prog. Polym. Sci., Vol. 37, pp. 1552-1596, 2012.
  • [3] Hojo, T., Xu, Z., Yang Y., Hamada, H., Tensile properties of bamboo, jute and kenaf mat-reinforced composite, Energia Procedia, Vol. 56, pp. 72-79, 2014.
  • [4] Ingle, N.P., Doke, S.S., Analysis of Sunnhemp fibers processed using jute spinning system, Industrial Crops and Products, Vol. 23, pp. 235-243, 2006.
  • [5] Kirk, E.E., Statistic: an introduction, Belmont, CA, Thomson/Wadsworth, 2008.
  • [6] Krzyżak, A., Vališ, D., Selected reliability measures of composites with natural fibres tested in climatic environment, International Conference on Military Technology Proceeding, ICMT’15, University of Defence, Brno, 2015, art no. 7153652.
  • [7] Ku, H., Wang, H., Pattarachaiyakoop, N., Trada, M., A review on the tensile properties of natural fiber reinforced polymer composites, Composites: Part B, Vol. 42, pp. 856-873, 2011.
  • [8] Lilholt, H., Lawther, M., Natural organic fibres, Comprehensive Materials, Volume 1: Fibre and general theory of composites, Chapter 9, Elsevier, 2000.
  • [9] Marques de Sa, J. P., Applied statistics using SPSS, STATISTICA and MATLAB, Springer Science & Business Media, 2003.
  • [10] Mouritz, A.P., Tensile fatigue properties of 3D composites with through-thickness reinforcement, Compos. Sci. Technol., Vol. 68, pp. 2503-2510. 2008.
  • [11] Naito, K., Yang, J. M., Kagawa, Y., Tensile properties of high strength polyacrylonitrile (PAN)-based and high modulus pitch-based hybrid carbon fibers-reinforced epoxy matrix composite, J. Mater. Sci., Vol. 47, pp. 2743-2751, 2012.
  • [12] Naito, K., Tensile properties of polyimide composites incorporating carbon nanotubes-grafted and polyimide-coated carbon fibers, JMEPEG 2014, Vol. 23, pp. 3245-3256.
  • [13] Racz, I., Hargitai, H., Influence of water on properties of cellulosic fibre reinforced polypro-pylinene composites, Int. J. Polym. Mat., Vol. 47, pp. 667-674, 2000.
  • [14] Reddy, N., Yang, Y., Natural cellulose fibers from soybean straw, Bioresour. Technol., Vol. 100, pp. 3593-3598, 2009.
  • [15] Sathishkumar, T. P., Navaneethakrishnan, P., Shankar, S., Tensile and tensile properties of snake grass natural fiber reinforced isophthallic polyester composites, Compos. Sci. Technol.,Vol. 72, pp. 1183-1190, 2012.
  • [16] Sgriccia, N., Hawley, M. C., Misra, M., Characterization of natural fiber surfaces and natural fiber composites, Composites: Part A, Vol. 39, pp. 1632-1637, 2008.
  • [17] Sheskin, D.J., Handbook of pramametric and nonparametric statistical procedures, Chapman & Hall/CRC, 2004.
  • [18] Stamboulis, A., Baillie, C. A., Peijs, T., Effects of environmental conditions on mechanical and physical properties of linen fibers, Composites: Part A, Vol. 32, pp. 1105-1115, 2001.
  • [19] Towo, A.N., Ansell, M.P., Fatigue of sisal fibre reinforced composites: Constant-life diagrams and hysteresis loop capture, Compos. Sci. Technol., Vol. 68, pp. 915-924, 2008.
  • [20] Wambua, P., Ivens, J., Verpoest, I., Natural fibres: can they replace glass in fibre reinforced plastics? Compos. Sci. Technol., Vol. 63, pp. 1259-1264, 2003.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8247ba1-17eb-4ee9-a52f-f80eeb156e5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.