PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dependence of creep failure probability on the size of metallic specimens

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The occurrence of statistical size effect is considered for damage in creep conditions. The numerical and experimental analysis have been performed. The obtained results are ambiguous. Numerical models confirm the scale effect which can be statistical or deterministic one. But this effect has no experimental verification. It may suggest that the weakest link model cannot be applied in creep conditions. Explanation of this needs further investigations.
Rocznik
Strony
166--169
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Civil Engineering, Strength of Material Department, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków
Bibliografia
  • 1. Bažant Z.P. (1984), Size Effect in Blunt Fracture: Concrete, Rock, Metal, J. Eng. Mech., 110, 518–535.
  • 2. Bažant Z.P. (1999), Size effect on structural strength: a review, Archive of Applied Mechanics, 69, 703-725.
  • 3. Bodnar, A., Chrzanowski, M. (2002), On creep rupture of rectangular plates, ZAMM, 82, 201-205.
  • 4. Carpinteri A., Spagnoli A. (2004), A fractal analysis of size effect on fatigue crack growth, Int. J. of Fatigue, 26, 125–133.
  • 5. Carpinteri A., Spagnoli A., Vantadori S. (2002), An approach to size effect in fatigue of metals using fractal theories, Fatigue Fract. Engng. Mater. Struct., 25, 619-627.
  • 6. Carpinteri A., Spagnoli A., Vantadori S. (2009), Size effect in S–N curves: A fractal approach to finite-life fatigue strength, Int. J. of Fatigue, 31, 927–933.
  • 7. Carpinteri A., Spagnoli A., Vantadori S. (2010), A multifractal analysis of fatigue crack growth and its application to concrete, Eng. Fract. Mech., 77, 974–984.
  • 8. Chrzanowski M. (1972), On the Possibility of Describing the Complete Process of Metallic Creep, Bull. Ac. Pol. Sc. Ser. Sc. Techn., XX, 75-81.
  • 9. Farris J.P., Lee J. D., Harlow D. G., Delph T.J. (1990), On the scatter in creep rupture times, Metallurgical and Materials Transactions, 21A, 345-352.
  • 10. Feltham P., Meakin J.D. (1959), Creep in Face-Centred Cubic Metals with Special Reference to Copper, Acta Metallurgica, 7, 614-627.
  • 11. Garofalo F., Whitmore R.W., Domis W.F., Gemmingen F. (1961), Creep and creep-rupture relationships in an austenitic stainless steel, Trans. Metall. Soc. AIME, 221, 310-319.
  • 12. Hayhurst D.R. (1974), The effects of test variables on scatter in high-temperature tensile creep-rupture data, International Journal of Mechanical Sciences, 16, 829-841.
  • 13. Kocańda S., Szala J. (1991), Podstawy obliczeń zmęczeniowych, PWN, Warszawa (in Polish).
  • 14. Monkman F.C., Grant N.J. (1956), An Empirical Relationship between Rupture Life and Minimum Creep Rate in Creep-Rupture Test, Proc. ASTM, 56, 593-620.
  • 15. Nowak K. (2011), Uncertainty of lifetime for CAFE creep damage model, Computer Methods in Materials Science, 11, 315-323.
  • 16. Raabe D. (2002), Cellular Automata in Materials Science with Particular Reference to Recrystallization Simulation, Ann. Review of Materials Research, 32, 53-76.
  • 17. Weibull W. (1939), The Phenomenon of Rupture in Solids, Proceedings of Royal Swedish Institute for Engineering Research, 153, 5-55.
  • 18. Yatomi M., Nikbin K.M., O'Dowd N.P. (2003), Creep crack growth prediction using a damage based approach, International Journal of Pressure Vessels and Piping, 80, 573-583.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e82414b8-8fd8-4f82-b1ff-43cc2c590288
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.