PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Statistical Comparison of the Hardness and Scratch-Resistance of the PMMA Polymers Used in Orthodontic Appliances

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the studies and results of the Shore hardness and scratch test of polymer materials used in medical devices. Polymers of organic PMMA (poly(methyl methacrylate)) origin for the manufacture of orthodontic appliances were tested. Samples of test materials differed in manufacturing technology. The surface functional properties of four materials were compared. Hardness tests were performed with the Shore D hardness test method. The scratch test was done with a Rockwell diamond cone indenter. The hardness was also calculated from the scratch test. Shore’s highest hardness was demonstrated in 1A material. But the differences in Shore’s hardness were small. Larger differences between the tested materials were shown in the scratch test than in the Shore hardness test. The lowest residual scratch depth (Rd) was obtained for 1A material. 3A material had the highest scratch hardness.
Twórcy
  • Department of Craniofacial Anomalies, University of Medical Sciences, Poznan, ul. Bukowska 70, 60-812 Poznań, Poland
autor
  • University of Economics and Innovations in Lublin, Faculty of Transport and Computer Science, 4 Projektowa st., 20-209 Lublin, Poland
  • Department of Craniofacial Anomalies, University of Medical Sciences, Poznan, ul. Bukowska 70, 60-812 Poznań, Poland
  • University of Economics and Innovations in Lublin, Faculty of Transport and Computer Science, 4 Projektowa st., 20-209 Lublin, Poland
  • University of Technology, Faculty of Civil and Transport Engineering, 3 Piotrowo st., 60-965 Poznań
autor
  • University of Technology, Faculty of Civil and Transport Engineering, 3 Piotrowo st., 60-965 Poznań
  • Department of Craniofacial Anomalies, University of Medical Sciences, Poznan, ul. Bukowska 70, 60-812 Poznań, Poland
Bibliografia
  • 1. Gómez-Mascaraque, L.G., Palao-Suay, R., Vázquez, B. The use of smart polymers in medical devices for minimally invasive surgery, diagnosis, and other applications, In Woodhead Publishing in Materials, Smart Polymers and their Applications (Second Edition); Aguilar, M.R., San Román, J., Eds.; Woodhead Publishing, Sawston, Cambridge, UK, 2019, pp. 481-531.
  • 2. Lamprou, D.A., Scoutaris, N., Ross, S.A., Douroumis, D. Polymeric coatings and their fabrication for medical devices, In Encyclopedia of Biomedical Engineering; Narayan, R., Ed.; Elsevier, Cambridge, USA, 2019, pp. 177-187.
  • 3. Chopra, A.M., Mehta, M., Bismuth, J., Shapiro, M., Fishbein, M.C., Bridges, A.G., Vinters, H.V. Polymer coating embolism from intravascular medical devices – a clinical literature review. Cardiovasc. Pathol. 2017, 30, 45-54.
  • 4. Pieniak, Daniel Wit-Rusiecki, Albin M Krzyżak, Aneta Gil, Leszek Krzysiak, Zbigniew: Adhesion tests of varnish coatings used on the surface of carbon fiber reinforced polimer compositions. Przemysł Chemiczny, 98(10), 1619-1622.
  • 5. Świderski, A.; Borucka, A.; Grzelak, M.; Gil, L. Evaluation of Machinery Readiness Using SemiMarkov Processes. Appl. Sci. 2020, 10, 1541.
  • 6. Tipnis, N.P., Burgess, D.J. Sterilization of implantable polymer-based medical devices: A review. Int. J. Pharm. 2018, 544, 455-460.
  • 7. Kuczko, W., Wichniarek, R., Górski, F., Banaszewski, J. Influence of Sterilization of a Product Manufactured Using FDM Technology on its Dimensional Accuracy. Adv. Sci. Technol. Res. J. 2018, 12, 74-79.
  • 8. Łępicka, M., Grądzka-Dahlke, M. Surface Analysis for Signs of Corrosion of Fixed Orthodontic Appliances Used In Vivo. Adv. Mater. Sci. 2016, 16, 5-14.
  • 9. Klimek, L., Palatyńska-Ulatowska, A. Scanning electron microscope appearances of fretting in the fixed orthodontic appliances. Acta. Bioeng. Biomech. 2012, 14, 79-83.
  • 10. Shepherd, D.E.T.; Dearn, K.D. Wear processes in polymer implants. In Woodhead Publishing Series in Biomaterials, Durability and Reliability of Medical Polymers; Jenkins, M., Stamboulis, A., Eds.; Woodhead Publishing, Sawston, Cambridge, UK, 2012, pp. 143–163.
  • 11. Lewis, P.R. The failure of synthetic polymeric medical devices. In Woodhead Publishing Series in Biomaterials, Durability and Reliability of Medical Polymers; Jenkins, M., Stamboulis, A., Eds.; Woodhead Publishing, Sawston, Cambridge, UK, 2012, pp. 183–224.
  • 12. Lewis, P.R. Manufacturing defects in polymeric medical devices. In Woodhead Publishing Series in Biomaterials, Durability and Reliability of Medical Polymers; Jenkins, M., Stamboulis, A., Eds.; Woodhead Publishing, Sawston, Cambridge, UK, 2012, pp. 225–268.
  • 13. Karthick, R., Sirisha, P., Ravi Sankar, M. Mechanical and Tribological Properties of PMMA-Sea Shell based Biocomposite for Dental application. Procedia Mater. Sci. 2014, 6, 1989-2000.
  • 14. Pieniak, D.; Walczak, A.; Niewczas, A.M.; Przystupa, K. The Effect of Thermocycling on Surface Layer Properties of Light Cured Polymer Matrix Ceramic Composites (PMCCs) Used in Sliding Friction Pair. Materials 2019, 12, 2776.
  • 15. Górski, F., Wichniarek, R., Kuczko, W., Burdzińska, M., Jankowska, M. Mechanical properties of parts of medical products produced using additive manufacturing technologies. Adv. Sci. Technol. Res. J. 2017, 11, 166-171.
  • 16. Walczak, A., Niewczas, A., Pieniak, D., Gil, L., Kozłowski, E., & Kordos, P. (2018). Temporary Stability of Compressive Strength of Flow and Universal Type LC PMCCS Materials. Advances in Materials Science, 18, 22-33.
  • 17. Gil, L., Pieniak, D., Walczak, M., Ignaciuk, P., & Sawa, J. (2014). Impact of acid number of fuels on the wear process of apparatus for fuel injection in diesel engines. Advances in Science and Technology Research Journal, 8(21), 54-57.
  • 18. Ignaciuk, P., & Gil, L. (2014). Damages to injectors in diesel engines. Advances in Science and Technology Research Journal, 8(21), 58-61.
  • 19. Szala M, Hejwowski T, Lenart I. Cavitation erosion resistance of Ni-Co based coatings. Advances in Science and Technology Research Journal, 2014, 8(21), 36-42. doi:10.12913/22998624.1091876.
  • 20. Szala, M., Szafran, M., Macek, W., Marchenko, S.V., & Hejwowski, T. (2019). Abrasion Resistance of S235, S355, C45, AISI 304 and Hardox 500 Steels with Usage of Garnet, Corundum and Carborundum Abrasives. Advances in Science and Technology Research Journal, 13, 151-161.
  • 21. Żebrowski, R., Walczak, M., Korga, A., Iwan, M., & Szala, M. (2019). Effect of Shot Peening on the Mechanical Properties and Cytotoxicity Behaviour of Titanium Implants Produced by 3D Printing Technology. Journal of Healthcare Engineering, 2019.
  • 22. Pieniak, D.; Przystupa, K.; Walczak, A.; Niewczas, A.M.; Krzyzak, A.; Bartnik, G.; Gil, L.; Lonkwic, P. Hydro-Thermal Fatigue of Polymer Matrix Composite Biomaterials. Materials 2019, 12, 3650.
  • 23. Pieniak, D.; Walczak, A.; Walczak, M.; Przystupa, K.; Niewczas, A.M. Hardness and Wear Resistance of Dental Biomedical Nanomaterials in a Humid Environment with Non-Stationary Temperatures. Materials 2020, 13, 1255.
  • 24. Łępicka, M.; Grądzka-Dahlke, M.; Pieniak, D.; Pasierbiewicz, K.; Niewczas, A. Effect of mechanical properties of substrate and coating on wear performance of TiN- or DLC-coated 316LVM stainless steel. Wear 2017, 382–383, 62–70.
  • 25. Łępicka, M.; Grądzka-Dahlke, M.; Pieniak, D.; Pasierbiewicz, K.; Kryńska, K.; Niewczas, A. Tribological performance of titanium nitride coatings: A comparative study on TiN-coated stainless steel and titanium alloy. Wear 2019, 422–423, 68–80.
  • 26.Lin, C., Chung, C., Chou, C., He, J. In vitro wear tests of the dual-layer grid blasting-plasma polymerized superhydrophobic coatings on stainless steel orthodontic substrates. Thin Solid Films 2019, 687, 137464.
  • 27. Pieniak, D., Gauda, K. Indentation Hardness and Tribological Wear in Conditions of Sliding Friction of the Surface Layer of Composites Based on Methacrylate Resins with Ceramic Nanofiller. Adv. Sci. Technol. Res. J. 2020, 14, 112-119.
  • 28.Leggat, P.A., Smith, D.R., Kedjarune, U. Surgical applications of methyl methacrylate: a review of toxicity Arch. Environ. Occup. Health 2009, 64, 207-212.
  • 29. Münker, T.J., Vijfeijken, S.E., Mulder, C.S., Vespasiano, V., Becking, A.G., Kleverlaan, C.J., Dubois, L., Karssemakers, L.H., Milstein, D.M., Depauw, P.R., Hoefnagels, F.W., Vandertop, W.P., Maal, T.J., Nout, E., Riool, M., & Zaat, S.A. Effects of sterilization on the mechanical properties of poly(methyl methacrylate) based personalized medical devices. J. Mech. Behav. Biomed. 2018, 81, 168-172 .
  • 30. Almaraz, G.M., Martínez, A.G., Sánchez, R.H., Gomez, E., Tapia, M., & Juárez, J. Ultrasonic fatigue testing on the polymeric material PMMA, used in odontology applications. Procedia Struct. Integrity 2017, 3, 562-570.
  • 31. Nowakowska-Toporowska, A., Malecka, K., Raszewski, Z., Wieckiewicz, W. Changes in hardness of addition polymerizing silicone resilient denture liners after storage in artificial saliva. J. Prosthet. Dent. 2019, 121, 317–321.
  • 32. Hirai, K., Ikawa, T., Shigeta, Y., Shigemoto, S., Ogawa, T. Evaluation of sleep bruxism with a novel designed occlusal splint. J. Prosthodont. Res. 2017, 61, 333-343 .
  • 33. Abdelbary, A.M. Polymer tribology. In Wear of Polymers and Composites, Abdelbary, A.M., Eds.; Woodhead Publishing, Sawston, Cambridge, UK, 2014, pp. 1-36.
  • 34. Abdelbary, A.M. Methodology of testing in wear. In Wear of Polymers and Composites, Abdelbary, A.M., Eds.; Woodhead Publishing, Sawston, Cambridge, UK, 2014, pp. 159-183.
  • 35.Jańczuk, Z. Stomatologia zachowawcza. Zarys kliniczny. (in polish), PZWL, Warsaw, Poland, 2008, 508.
  • 36. Komorowska, A. Materiały i Techniki Ortodontyczne. (in polish), PTO, Warsaw, Poland, 2009, 172.
  • 37. www.vertex-dental.com. Available online: https://www.vertex-dental.com/en/products/31- en/26/151-vertex-orthoplast-shade-guide (accessed on 15 april 2020).
  • 38.Mohamed, M.I., Aggag, G. Uncertainty evaluation of shore hardness testers. Measurement 2003, 33, 251-257.
  • 39. Dasari, A., Rohrmann, J., Misra, R.D.K. On the scratch deformation of micrometric wollastonite reinforced polypropylene composites. Mater. Sci. Eng., A 2004, 364, 357-369.
  • 40. Briscoe, B.J., Pelillo, E., Sinha, S.K. Scratch hardness and deformation maps for polycarbonate and polyethylene. Polym. Eng. Sci. 2003, 36, 2996–3005.
  • 41. Godziszewski, J., Mania, R., Pampuch, R. Zasady planowania doświadczeń i opracowania wyników pomiarów. (in polish), AGH, Cracow, Poland, 1982, 407.
  • 42. Volk, W. Applied Statistics for Engineers. Literary Licensing, LLC, Whitefish, MT, USA, 2013, 364.
  • 43. Hill, T., Lewicki, P. Statistics: methods and applications: a comprehensive reference for science, industry and data mining. StatSoft, Inc., UK, 2006, 832.
  • 44. Bordens, K.S., Abbott, B.B. Research Design and Methods. A Process Approach. McGraw-Hill, New York, USA, 2018, 624.
  • 45. Blau, P.J. The significance and use of the friction coefficient. Tribol. Int. 2001, 34, 585-591.
  • 46. Zhou, Z., Zheng, J. Tribology of dental materials: a review. J. Phys. D: Appl. Phys. 2008, 41, 113001.
  • 47. Every, R.G., Kuhne, W.G., Kermack, D.M., Kermack, K.A. Bimodal Wear of Mammalian Teeth. early Mammals. Zool. J. Linn. Soc. 1971, 50, 23-27.
  • 48. Mair, L.H., Stolarski, T.A., Vowles, R.W., Loyd C.H. Wear: mechanisms, manifestations and measurement Report of a workshop. J. Dentistry 1996, 24, 141–148.
  • 49. Pieniak, D., Niewczas, A.M., Kordos, P. Influence of thermal fatigue and ageing on the microhardness of polymer-ceramic composites for biomedical applications. Eksploatacja i Niezawodnosc, 2012, 14 (2), 181-188.
  • 50. Kajdas, C., Kulczycki, A., Ozimina, D. A new concept of the mechanism of tribocatalytic reactions induced by mechanical forces. Tribol. Int. 2017, 107, 144-151.
  • 51. Gałuszka, G., Madej, M., Ozimina, D., Kasińska, J., Gałuszka, R. The characterisation of pure titanium for biomedical applications. Metalurgija 2017, 56, 191-194.
  • 52. Browning, R.L., Jiang H., Sue, H.-J. Scratch behavior of polymeric materials. In Tribology of Polymeric Nanocomposites, Friedrich K., Schlarb, A.K., Eds.; Butterworth-Heinemann, Oxford, UK, 2013, pp. 513-550.
  • 53. Myshkin, N.K., Petrokovets, M.I., & Kovalev, A.S. Tribology of polymers: Adhesion, friction, wear, and mass-transfer. Tribol. Int. 2005, 38, 910-921.
  • 54. ASTM G171 - Standard test method for scratch hardness of materials using a diamond stylus; ASTM International, West Conshohocken, PA, USA, 2003.
  • 55. Glossary of terms and definitions in the field of friction, wear and lubrication (tribology). Wear 1970, 15, 456 .
  • 56. Abdelbary, A.M. Wear of polymers in wet conditions. In Wear of Polymers and Composites, Abdelbary, A.M., Eds.; Woodhead Publishing, Sawston, Cambridge, UK, 2014, pp. 95-112.
  • 57. Rymuza, Z. Tribology of Polymers, Arch Civ Mech Eng 2007, 7, 177-184.
  • 58. Dasari, A., Yu, Z., Mai, Y. Wear and scratch damage in polymer nanocomposites. In Tribology of Polymeric Nanocomposites, Friedrich K., Schlarb, A.K., Eds.; Butterworth-Heinemann, Oxford, UK, 2013, pp. 551-570.
  • 59. Browning, R., Lim, G.T., Moyse, A., Sun, L., Sue, H. Effects of slip agent and talc surface-treatment on the scratch behavior of thermoplastic olefins. Polym. Eng. Sci. 2006, 46, 601–608.
  • 60. Rawls, A.S., Hirt, D.E., Havens, M.R., & Roberts, W.P. Evaluation of surface concentration of erucamide in LLDPE films., J. Vinyl. Addit. Techn. 2002, 8, 130–138.
  • 61. Edenbaum, J. Plastics Additives and Modifiers Handbook. Chapman & Hall, London, UK, 1996, 1136
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e81d443a-3416-4f7d-bf8e-e72375fa88a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.