PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rough Fuzzy Concept Analysis

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We provide a new approach to fusion of Fuzzy Formal Concept Analysis and Rough Set Theory. As a starting point we take into account a couple of fuzzy relations, one of them represents the lower approximation, while the other one the upper approximation of a given data table. By defining appropriate concept-forming operators we transfer the roughness of the input data table to the roughness of corresponding formal fuzzy concepts in the sense that a formal fuzzy concept is considered as a collection of objects accompanied with two fuzzy sets of attributes— those which are shared by all the objects and those which at least one object has. In the paper we study the properties of such formal concepts and show their relationship with concepts formed by well-known isotone and antitone operators.
Wydawca
Rocznik
Strony
141--168
Opis fizyczny
Bibliogr. 58 poz., rys., tab.
Twórcy
autor
  • Dept. Computer Science, Palacký University Olomouc, 17. listopadu 12, CZ-77146 Olomouc, Czech Republic
autor
  • Dept. Computer Science, Palacký University Olomouc, 17. listopadu 12, CZ-77146 Olomouc, Czech Republic
Bibliografia
  • [1] Bartl E, and Belohlavek R. Reducing sup-t-norm and inf-residuum to a single type of fuzzy relational equations. In Fuzzy Information Processing Society (NAFIPS), 2011 Annual Meeting of the North American, pp. 1–5, March 2011. doi:10.1109/NAFIPS.2011.5752008.
  • [2] Bartl E, Belohlavek R, and Konecny J. Optimal decompositions of matrices with grades into binary and graded matrices. Annals of Mathematics and Artificial Intelligence, 2010;59(2):151–167. URL https://doi.org/10.1007/s10472-010-9185-y.
  • [3] Bartl E, Belohlavek R, Konecny J, and Vychodil V. Isotone Galois connections and concept lattices with hedges. In IEEE IS 2008, Int. IEEE Conference on Intelligent Systems, pp. 15–24–15–28, Varna, Bulgaria, 2008. doi:10.1109/IS.2008.4670534.
  • [4] Bartl E, and Konecny J. Using Linguistic Hedges in L-rough Concept Analysis. In CLA 2015, The Twelfth Int. Conference on Concept Lattice and Their Applications, pp. 229–240, Clermont-Ferrand, France, 2015. ISBN 978-2-9544948-0-7.
  • [5] Belohlavek R. Reduction and simple proof of characterization of fuzzy concept lattices. Fundamenta Informaticae, 2001;46(4):277–285.
  • [6] Belohlavek R. Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic Publishers, Norwell, USA, 2002. doi:10.1007/978-1-4615-0633-1.
  • [7] Belohlavek R. Concept lattices and order in fuzzy logic. Ann. Pure Appl. Log., 2004;128(1-3):277–298. URL https://doi.org/10.1016/j.apal.2003.01.001.
  • [8] Belohlavek R. Optimal decompositions of matrices with entries from residuated lattices. Journal of Logic and Computation, 2012;22(6)1405–1425. URL https://doi.org/10.1093/logcom/exr023.
  • [9] Belohlavek R. Sup-t-norm and inf-residuum are one type of relational product: Unifying framework and consequences. Fuzzy Sets Syst., 2012;197:45–58. URL https://doi.org/10.1016/j.fss.2011.07.015.
  • [10] Belohlavek R, Dvorak J, and Outrata J. Fast factorization by similarity in formal concept analysis of data with fuzzy attributes. Journal of Computer and System Sciences, 2007;73(6):1012–1022. URL https://doi.org/10.1016/j.jcss.2007.03.016.
  • [11] Belohlavek R, Funioková T, and Vychodil V. Fuzzy closure operators with truth stressers. Logic Journal of the IGPL, 2005;13(5):503–513. URL https://doi.org/10.1093/jigpal/jzi038.
  • [12] Belohlavek R, and Konecny J. Operators and spaces associated to matrices with grades and their decompositions. In NAFIPS 2008, 2008 pp. 288–293. doi:10.1109/NAFIPS.2008.4531254.
  • [13] Belohlavek R, and Konecny J. Closure spaces of isotone Galois connections and their morphisms. In Proceedings of the 24th international conference on Advances in Artificial Intelligence, AI’11, Springer, Berlin, Heidelberg, 2011 pp. 182–191. URL https://doi.org/10.1007/978-3-642-25832-9_19.
  • [14] Belohlavek R, and Konecny J. Concept lattices of isotone vs. antitone galois connections in graded setting: Mutual reducibility revisited. Information Sciences, 2012;199(0):133–137. URL https://doi.org/10.1016/j.ins.2012.02.064.
  • [15] Belohlávek R, Konecny J, and Osicka P. Simple proof of basic theorem for general concept lattices by cartesian representation. In Vicenç Torra, Yasuo Narukawa, Beatriz López, and Mateu Villaret, editors, MDAI, volume 7647 of Lecture Notes in Computer Science, 2012 pp. 294–305. URL https://doi.org/10.1007/978-3-642-34620-0_27.
  • [16] Belohlavek R and Vilem Vychodil. Reducing the size of fuzzy concept lattices by hedges. In FUZZ-IEEE 2005, The IEEE International Conference on Fuzzy Systems, Reno (Nevada, USA) 2005 pp. 663–668. doi:10.1109/FUZZY.2005.1452473.
  • [17] Belohlavek R, and Vychodil V. What is a fuzzy concept lattice? In Proc. CLA 2005, 3rd Int. Conference on Concept Lattices and Their Applications, 2005 pp. 34–45. doi:10.1007/978-3-642-21881-1_4.
  • [18] Belohlavek R, and Vychodil V. Fuzzy concept lattices constrained by hedges. JACIII, 2007;11(6):536–545. doi:10.20965/jaciii.2007.p0536.
  • [19] Boixader D, Jacas J, and Recasens Ferrés J. Upper and lower approximations of fuzzy sets. International Journal of General Systems, 2000;29(4):555–568. URL http://hdl.handle.net/2117/20091.
  • [20] Burusco A, and Fuentes-Gonzáles R. The study of the L-fuzzy concept lattice. Ann. Pure Appl. Logic, 1994;I(3):209–218.
  • [21] Carpineto C, and Romano G. Concept Data Analysis: Theory and Applications. John Wiley & Sons, 2004. ISBN:0470850558.
  • [22] Ciobanu G, and Vaideanu C. Similarity relations in fuzzy attribute-oriented concept lattices. Fuzzy Sets and Systems, 2015;275:88–109. URL https://doi.org/10.1016/j.fss.2014.12.011.
  • [23] Czédli G. Factor lattices by tolerances. Acta Sci. Math., 1982;44:35–42.
  • [24] Dubois D, and Prade H. Rough fuzzy sets and fuzzy rough sets. International Journal of General Systems, 1990;17(2–3):191–209. URL http://dx.doi.org/10.1080/03081079008935107.
  • [25] Dubois D, and Prade H. Putting rough sets and fuzzy sets together. In Roman Słowiński, editor, Intelligent Decision Support, volume 11 of Theory and Decision Library, Springer Netherlands, 1992 pp. 203–232. URL https://doi.org/10.1007/978-94-015-7975-9_14.
  • [26] Esteva F, Garcia P, and Godo L. Discovering the world with fuzzy logic. chapter Similarity-based Reasoning, pp. 367–396. Physica-Verlag GmbH, Heidelberg, Germany, Germany, 2000. ISBN:978-3-7908-1839-0.
  • [27] Ganter B, and Wille R. Formal Concept Analysis–Mathematical Foundations. Springer, 1999. doi:10.1007/978-3-642-59830-2.
  • [28] Georgescu G, and Popescu A. Non-dual fuzzy connections. Arch. Math. Log., 2004;43(8):1009–1039. URL https://doi.org/10.1007/s00153-004-0240-4.
  • [29] Gunji Y-P, and Haruna T. A non-boolean lattice derived by double indiscernibility. In James F. Peters, Andrzej Skowron, Roman Słowiński, Pawan Lingras, Duoqian Miao, and Shusaku Tsumoto, editors, Transactions on Rough Sets XII, volume 6190 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2010 pp. 211–225. ISBN:3-642-14466-7, 978-3-642-14466-0.
  • [30] Hájek P. Metamathematics of Fuzzy Logic (Trends in Logic). Springer, November 2001.
  • [31] Hájek P. On very true. Fuzzy Sets and Systems, 2001;124(3):329–333. URL https://doi.org/10.1016/S0165-0114(01)00103-8.
  • [32] Ali Jaoua, Faisal Alvi, Samir Elloumi, and Sadok Ben Yahia. Galois connection in fuzzy binary relations, applications for discovering association rules and decision making. In RelMiCS, pp. 141–149, 2000.
  • [33] Kneale WC, and Kneale M. The Development of Logic. Oxford University Press, USA, 1985. ISBN-10:0198247737, 13: 978-0198247739.
  • [34] Konecny J. Isotone fuzzy Galois connections with hedges. Information Sciences. Special Issue on Information Engineering Applications Based on Lattices. 2011;181(10):1804–1817. URL https://doi.org/10.1016/j.ins.2010.11.011.
  • [35] Konecny J. Attribute-oriented fuzzy concept lattices and standard fuzzy concept lattices induce the same similarity on objects. Fuzzy Sets and Systems, in press.
  • [36] Konecny J, and Krupka M. Complete relations on fuzzy complete lattices. Submitted; preprint available at: http://arxiv.org/abs/1506.03930.
  • [37] Krajci S. A generalized concept lattice. Logic Journal of the IGPL, 2005;13(5):543–550. URL https://doi.org/10.1093/jigpal/jzi045.
  • [38] Lai H, and Zhang D. Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory. Int. J. Approx. Reasoning, 2009;50(5):695–707. URL https://doi.org/10.1016/j.ijar.2008.12.002.
  • [39] Medina J, Ojeda-Aciego M, and Ruiz-Calviño J. Formal concept analysis via multi-adjoint concept lattices. Fuzzy Sets Syst., 2009;160(2):130–144. doi:10.1016/j.fss.2008.05.004.
  • [40] Morsi NN, Lotfallah W, and El-Zekey MS. The logic of tied implications, part 1: Properties, applications and representation; part 2: Syntax. fuzzy sets and systems. What is Fuzzy Logic What is Fuzzy Logic. Fuzzy Sets and Systems, 2006;157(5):647–669. doi:10.1016/j.fss.2005.10.018.
  • [41] Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Norwell, MA, USA, 1992.
  • [42] Poelmans J, Ignatov DI, Kuznetsov SO, and Dedene G. Fuzzy and rough formal concept analysis: a survey. International Journal of General Systems, 2014;43(2):105–134. URL http://dx.doi.org/10.1080/03081079.2013.862377.
  • [43] Pollandt S. Fuzzy Begriffe: Formale Begriffanalyse von unscharfen Daten. Springer–Verlag, Berlin–Heidelberg, 1997.
  • [44] Popescu A. A general approach to fuzzy concepts. Mathematical Logic Quarterly, 2004;50(3):265–280. doi:10.1002/malq.200310098.
  • [45] Radzikowska AM, and Kerre EE. Fuzzy rough sets based on residuated lattices. In JamesF. Peters, Andrzej Skowron, Didier Dubois, Jerzy W. Grzymała-Busse, Masahiro Inuiguchi, and Lech Polkowski, editors, Transactions on Rough Sets II, volume 3135 of Lecture Notes in Computer Science, pp. 278–296. Springer Berlin Heidelberg, 2005.
  • [46] Shao MW, Liu M, and Zhang W-X. Set approximations in fuzzy formal concept analysis. Fuzzy Sets Syst., 2007;158(23):2627–2640. URL https://doi.org/10.1016/j.fss.2007.05.002.
  • [47] Slowinski R, and Vanderpooten D. A generalized definition of rough approximations based on similarity. IEEE Transactions on Knowledge & Data Engineering, 2000;12(2):331–336. doi:10.1109/69.842271.
  • [48] Vychodil V. Truth-depressing hedges and BL-logic. Fuzzy Sets and Systems, 2006;157(15):2074–2090. URL https://doi.org/10.1016/j.fss.2006.03.022.
  • [49] Wang L, and Liu X. Concept analysis via rough set and {AFS} algebra. Information Sciences, 2008;178(21):4125–4137. URL https://doi.org/10.1016/j.ins.2008.07.004.
  • [50] Ward M, and Dilworth RP. Residuated lattices. Transactions of the American Mathematical Society, 1939;45:335–354.
  • [51] Wille R. Complete tolerance relations of concept lattices. In G. Eigenthaler and et al., editors, Contributions to General Algebra, volume 3, pp. 397–415. Hölder-Pichler-Tempsky, Wien, 1985. doi:10.1016/j.fss.2016.08.007 .
  • [52] Wu W-Z, Mi J-S, and Zhang W-X. Generalized fuzzy rough sets. Information Sciences, 2003;151:263–282. URL https://doi.org/10.1016/S0020-0255(02)00379-1.
  • [53] Yao Y-Q, and Mi J-S. Fuzzy concept lattices determined by (θ,σ)-fuzzy rough approximation operators. In Peng Wen, Yuefeng Li, Lech Polkowski, Yiyu Yao, Shusaku Tsumoto, and Guoyin Wang, editors, Rough Sets and Knowledge Technology, volume 5589 of Lecture Notes in Computer Science, pp. 601–609. Springer Berlin Heidelberg, 2009. URL https://doi.org/10.1007/978-3-642-02962-2_76.
  • [54] Yao Y. Relational interpretations of neighborhood operators and rough set approximation operators. Information Sciences, 1998;111(1-4):239–259. URL https://doi.org/10.1016/S0020-0255(98)10006-3.
  • [55] Yao Y. A comparative study of formal concept analysis and rough set theory in data analysis. In Shusaku Tsumoto, Roman Słowiński, Jan Komorowski, and Jerzy W. Grzymała-Busse, editors, Rough Sets and Current Trends in Computing, volume 3066 of Lecture Notes in Computer Science, pp. 59–68. Springer Berlin Heidelberg, 2004. URL https://doi.org/10.1007/978-3-540-25929-9_6.
  • [56] Zadeh LA. Fuzzy sets. Information and Control, 1965;8(3):338–353. URL https://doi.org/10.1016/S0019-9958(65)90241-X.
  • [57] Zdislaw P. Rough sets. International Journal of Computer & Information Sciences, 1982;11(5):341–356.
  • [58] Zhu W. Generalized rough sets based on relations. Information Sciences, 2007;177(22):4997–5011. URL https://doi.org/10.1016/j.ins.2007.05.037.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e81c57a3-1112-42ed-8bf9-e491e89981e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.