PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Efekty mieszania w wybranych zagadnieniach procesów inżynierii produktu

Autorzy
Identyfikatory
Warianty tytułu
EN
Effects of mixing in selected problems of product engineering processes
Języki publikacji
PL
Abstrakty
PL
Praca prezentuje możliwości kontrolowania końcowych cech produktu chemicznego poprzez dobór warunków prowadzenia procesu, a w szczególności warunków mieszania reagentów. Przedstawiono sposoby i wyniki modelowania połączone z doświadczalną weryfikacją wpływu mieszania na przebieg złożonych procesów chemicznych na przykładzie charakterystycznych procesów: realizacji równoległych i procesu precypitacji. W ostatnich latach do modelowania procesów chemicznych wykorzystuje się obliczeniową mechanikę płynów, obserwowany zaś współcześnie wzrost wydajności komputerów pozwolił na zastosowanie zaawansowanych modeli, takich jak modele wielkowirowe. W pierwszej części pracy przedstawiono możliwości modelowania przepływu burzliwego, wykazując ograniczenia modelowania bezpośredniego i pokazując, te modele wielkowirowe są rozsądną alternatywą pomiędzy jakością uzyskiwanych wyników a wymogami co do niezbędnej mocy obliczeniowej. Określono również warunki koniecz.ne do spełnienia dotyczące rozdzielczości przestrzennej i czasowej oraz opisano kryteria zbieżności obliczeń numerycznych. W dalszej części pracy skupiono się na przedstawieniu wybranych modeli podsiatkowych dla przepływu i mieszania pasywnego chemicznie trasera. Modelowanie mieszania burzliwego z jednoczesną reakcją chemiczną oparto na metodzie zamknięcia wykorzystującej funkcję gotowości prawdopodobieństwa aproksymowaną przez funkcję beta. Jako reakcje testowe wybrano układ równoległych reakcji chemicznych zobojętniania zasady sodowej kwasem solnym i zasadową hydrolizę chlorooctanu etylu oraz proces precypitacji siarczanu baru następujący po zmieszaniu wodnych roztworów siarczanu sodu i chlorku baru. Przebieg wybranych procesów w pierwszej kolejności rozważano w reaktorach zbiornikowych z mieszadłem turbinowo-tarczowym o działaniu ciągłym i półokresowym. Obliczenia wykonano z wykorzystaniem modeli opartych na uśrednieniu Reynoldsa połączonych z modelem mieszalnika burzliwego i hipotezą zamykającą. Wyniki modelowe porównano z danymi doświadczalnymi, uzyskanymi zarówno z nieinwazyjnych pomiarów laserowych, takich jak anemometria laserowa, anemometria obrazowa, laserowo indukowana fluorescencja, jak i wartościami określającymi własności końcowe produktów, takimi jak końcowa selektywność reakcji i średni rozmiar cząstek. Następnie przedstawiono zastosowanie modeli wielkowirowych do symulacji przebiegu wyżej wymienionych procesów w dwóch typach reaktorów przepływowych: reaktorze kanałowym z dozowaniem poprzecznym oraz reaktorze rurowym wyposażonym w głowicę zderzeniową typu T-mieszalnik. W pracy zaproponowano nową procedurę modelowania mieszania z reakcją chemiczną z użyciem modeli wielkowirowych. Dobra zgodność wyników teoretycznych i doświadczalnych potwierdziła jej poprawność. Wynikiem niniejszej pracy jest opracowanie metod opisu matematycznego wpływu mieszania na przebieg złożonych procesów w reaktorach chemicznych, co daje możliwość przewidywania własności końcowych produktów, takich jak selektywność reakcji, morfologia i rozmiar cząstek. Wykazano również praktyczne możliwości stosowania modeli wielkowirowych w procesach inżynierii chemicznej i procesowej.
EN
The paper focuses on the methods of testing the influence of mixing on product qualities like selectivity, particle size distribution and morphology of the solid product. The practical aspects of these effects arc related to the fact that many chemical reactions leading to desirable intermediate and end-products are accompanied by side reactions producing undesired by-products. To predict, control and optimize mixing effects on chemical reactions, one needs to apply so-called micromixing models and closure methods, usually in combination with CFD. In recent years, large eddy simulation (LES) has become a very attractive method for simulations of reactive flow for a wide range of Reynolds number. It is an intermediate technique between direct numerical simulation (ONS) of turbulent flow and the solution of Reynolds-averaged equations. To evaluate predictions of models describing reactive mixing, one can employ specially designed mixing sensitive test reactions. In this paper, two characteristic processes were considered: a parallel reaction system that includes competitive neutralization of hydrochloric acid and alkaline hydrolysis of the ethyl chloro-acetate and precipitation of barium sulphate from aqueous solutions of barium chloride and sodium sulphate. Consideration of the effects of turbulent mixing on the course of the complex processes starts from modelling of stirred tank reactor of continuous and semibatch mode. In this case the non-equilibrium multiple-time-scale mixing model combined with a standard k-ɛ model and conditional moment closure were included. The obtained predictions were compared with experimental data, fluid velocity was measured using Laser Doppler Anemometry (LOA) and the Particle Image Velocity (PIV) technique, whilst the passive tracer concentration was measured using the Planar Laser Induced Fluorescence (PLIF) technique; also the final product quality was measured: the final selectivity or mean particle diameter. Next, the large eddy simulation method was applied to model the course of complex processes in two reactors: the square channel reactor with the cross dosing section and a tubular reactor with a T-shaped mixing head. The new procedures of subgrid modelling of the course of chemical reactions and precipitation were presented. The simulation results are compared with PIV and PLIF experimental data and With results obtained using the multiple time-scale mixing model combined with the k-ɛ model. All comparisons show a very good performance of the model based on LES. Practical applications of the presented models to predict the course of chemical reactions in different reactor types were presented.
Rocznik
Strony
3--166
Opis fizyczny
Bibliogr. 213 poz., rys., wykr.
Twórcy
autor
  • Wydział Inżynierii Chemicznej i Procesowej
Bibliografia
  • 1. Aldama A.A., 1990. Filtering techniques for turbulent flow simulation, in Springer Lecture Notes in Eng., 56, 7-41.
  • 2. Anderson J.D., 1995. Computational fluid dynamics: the basics with applications, McGraw-Hill, New York.
  • 3. Balarac G., Pitsch H., Raman V., 2008. Development of a dynamic model for the subfilter scalar variance using the concept of optimal estimators, Phys. Fluids, 20, 035114-035114-9.
  • 4. Balaras E., Benocci C., 1994. Subgrid scale models in finite difference simulations of complex wall bounded flow, AGARD CP 551, AGARD, Neuilly-sur-Seine, France, 2.1-5.
  • 5. Balaras E., Benocci C., Piomelli U., 1996. Two-layer approximate boundary conditions for large-eddy simulations, AIAA J. 34, 1111-1119.
  • 6. Bałdyga J., 1988. Mechanism and models of liquid micromixing in turbulent flow system, Prace Instytutu Inżynierii Chemicznej i Procesowej Politechniki Warszawskiej, Z. 1-2, Wydawnictwo Politechniki Warszawskiej, Warszawa.
  • 7. Bałdyga J., 1989. Turbulent mixer model with application to homogenous instantaneous chemical reactions, Chem. Eng. Sci., 44, 1175-1182.
  • 8. Bałdyga J., 1994. A closure model for homogeneous chemical reactions, Chem. Eng. Sci., 49, 1985-2003.
  • 9. Bałdyga J., 2010. Inżynieria produktu a inżynieria chemiczna, Inż. Ap. Chem., 49, 23-24.
  • 10. Bałdyga J., Bourne J.R., 1984. A fluid mechanical approach to turbulent mixing and chemical reaction: Part I, Inadequacies of available methods, Chem. Eng. Commun. 28, 231-241 .
  • 11. Bałdyga J., Bourne J.R., 1992. Interactions between mixing on various scales in stirred tank reactors, Chem. Eng. Sci., 47, 1839-1848.
  • 12. Bałdyga J., Bourne J.R., Dubuis B., Etchells A. W., Gholap R.V., Zimmermann B., 1995. Jet Reactor Scale-up for Mixing-Controlled Reactions, Chem. Eng. Res. Des., 73, 497-502.
  • 13. Bałdyga J., Bourne J.R., Hearn S.J., 1997. Interaction between chemical reactions and mixing on various scales, Chem. Eng. Sci., 52, 457-466.
  • 14. Bałdyga J., Bourne J.R., 1989. Simplification of micromixing calculations. I. Derivation and application of new model, Chem. Eng. J., 42, 83-92
  • 15. Bałdyga J., Bourne J.R., 1990. The effect of micromixing on parallel reactions, Chem. Eng. Sci., 45, 907-916.
  • 16. Bałdyga J., Bourne J.R., 1999. Turbulent Mixing and Chemical Reactions, Wiley, Chichester.
  • 17. Bałdyga J., Henczka M., 1997. Turbulent mixing and parallel chemical reactions in a pipe - application of a closure model, Récent Progrés en Génie des Procédés, 11, 341-348.
  • 18. Bałdyga J., Henczka M., Makowski Ł., 2001. Effects of mixing on parallel chemical reactions in a continuous-flow stirred-tank reactor, Trans IChemE, 79, 895-900.
  • 19. Bałdyga J., Jasińska M., 2002. Problem funkcji gęstości rozkładu stężeń (PDF) w modelowaniu reaktorów chemicznych, Inż. Ap. Chem., 41, 24-26.
  • 20. Bałdyga J., Makowski Ł., 1999. Badanie przepływu burzliwego w reaktorze zbiornikowym z mieszadłem przy użyciu anemometru laserowego, Prace Wydziału Inżynierii Chemicznej i Procesowej PW, 25, 45-52.
  • 21. Bałdyga J., Makowski Ł., 2002. Badanie selektywności przebiegu reakcji równoległych w reaktorze zbiornikowym z mieszadłem - efekty mieszania i sposobu zasilania reaktora, Inż. Ap. Chem., 41, 29-30.
  • 22. Bałdyga J., Makowski Ł., 2004a. CFD modelling of mixing effects on the course of parallel chemical reactions carried out in a stirred tank, Chem. Eng. Technol., 27, 225-230.
  • 23. Bałdyga J., Makowski Ł., 2004b. Reactive mixing in stirred tanks, Chem. Eng. Technol., Proceedings of 3 International Conference on Tracer and Tracing Methods, 21-26.
  • 24. Bałdyga J., Makowski Ł., 2004c. Badanie wpływu mieszania burzliwego na przebieg równoległych reakcji chemicznych w reaktorze zbiornikowym, Inż. Chem. i Proc., 25, 647-652.
  • 25. Bałdyga J., Makowski Ł., 2006. Effects of mixing on complex chemical reactions. Problem of micromixing models, Inż. Chem. i Proc., 27, 363-376.
  • 26. Bałdyga J., Makowski Ł., Orciuch W., 2005a. Interaction between mixing, chemical reactions, and precipitation, Ind. Eng. Chem. Res., 44, 5342-5352.
  • 27. Bałdyga J., Makowski Ł., Orciuch W., 2005b. Single and double feed semibatch precipitation - effects of mixing, Proceedings of 16th International Symposium on Industrial Crystallization, 1057-1062.
  • 28. Bałdyga J., Makowski Ł., Orciuch W., 2007a. Double-feed semibatch precipitation: effects of mixing, Chem. Eng. Res. Des., 85, 745-752.
  • 29. Bałdyga J., Makowski Ł., Orciuch W., Sauter C., Schuchmann H.P., 2008a. Deagglomeration processes in high-shear devices, Chem. Eng. Res. Des., 86, 1369-1381.
  • 30. Bałdyga J., Makowski Ł., Orciuch W., Sauter C., Schuchmann H.P., 2009. Agglomerate dispersion in cavitating flows, Chem. Eng. Res. Des., 87, 474-484.
  • 31. Bałdyga J., Orciuch W., 1997. Closure problem for precipitation, Trans. Inst. Chem. Eng., 75A, 160-170.
  • 32. Bałdyga J., Orciuch W., 2001. Barium sulphate precipitation in a pipe - an experimental study and CFD modelling, Chem. Eng. Sci., 56, 2435-2444.
  • 33. Bałdyga J., Orciuch W., Makowski Ł., 2006. Micromixing effects in precipitation - application of CFD, Polish Journal of Chemical Technology, 8, 4-11.
  • 34. Bałdyga J., Orciuch W., Makowski Ł., Krasiński A., Malski-Brodzicki M., Malik K., 2008b. Shear flow of aggregated nano-suspensions - fundamentals and model formulation, J. Disp. Sci. Technol., 29, 564-572.
  • 35. Bałdyga J., Orciuch W., Makowski Ł., Malik K., Özcan-Taşkin G., Eagles W., Padron G., 2007b. Dispersion of nanoparticle clusters in a rotor-stator mixer, Ind. Eng. Chem. Res., 47, 3652-3663.
  • 36. Bałdyga J., Orciuch W., Makowski Ł., Malski-Brodzicki M., Malik K., 2007c. Break-up of nanoparticle clusters in high-shear devices, Chem. Eng. Process., 46, 851-861.
  • 37. Bałdyga J., Orciuch W., Makowski Ł., Malski-Brodzicki M., Malik K., 2008c. Break-up of nanoparticle clusters - process modelling, J. Disp. Sci. Technol., 29, 555-563.
  • 38. Bałdyga J., Podgórska W., Pohorecki R., 1995. Mixing-precipitation model with application to double feed semibatch precipitation, Chem. Eng. Sci., 50, 1281-1300.
  • 39. Bamford C. H., Tipper C.F., 1972. Comprehensive Chemical Kinetics, vol. 10, Elsevier.
  • 40. Barresi A.A., Marchisio D., Baldi G., 1999. On the role of micro- and mesomixing in a continuous Couette-type precipitator, Chem. Eng. Sci., 54, 2339-2349.
  • 41. Batchelor G.K., 1959. Small scale variation of convected quantities like temperature in turbulent fluid, Part I. General discussion and the case of small conductivity, J. Fluid Mech., 5, 113-134.
  • 42. Batten P., Goldberg U., Chakarvanhy S., 2004. Interfacing Statistical Turbulence Closures with Large-Eddy Simulation, AIAA Journal, 42, 485-492.
  • 43. Bird R.B., Stewart W.E., Lightfoot E.N., 2002. Transport Phenomena, John Wiley & Sons, New York.
  • 44. Bourne J.R., Kut O.M., Lenzner J., 1992. An improved reaction system to investigate micromixing in high-intensity mixers, Ind. Eng. Chem. Res., 31, 949-958.
  • 45. Bourne J.R., Kut O.M., Lenzner J., Maire H., 1990. Kinetics of the diazo coupling between 1-Naphthol and diazotized sulfanilic acid, Ind. Eng. Chem. Res., 29, 1761-1765.
  • 46. Bourne, J. R., Studer, M., 1992. Fast reactions in rotor-stator mixers of different size, Chem. Eng. Process., 31, 285-296.
  • 47. Boussinesq J., 1877. Essai sur la thèorie des eaux courantes, Mémories presents par divers savantas à l'Acedèmie des Sciences, 23, 1-680.
  • 48. Bradley N., Jones W.P., 1999. Large eddy simulation of a nonpremixed turbulent swirling flame, Engineering Turbulence Modelling and Experiments, 4, 861-870.
  • 49. Bradley N., Jones W.P., 1997. Large eddy simulation of turbulent non-premixed flame, Proceedings of the 11th Symposium on Turbulent Shear Flows, 4.1-4.6.
  • 50. Bradshaw P., Ferris D.H., Atwell N.P, 1967. Calculation of boundary layer development using the turbulent energy equation, J. Fluid Mech., 28, 593-616.
  • 51. Bromley L.A., 1973. Thermodynamic properties of strong electrolytes in aqueous solutions, AIChE J., 19, 313-320.
  • 52. Cabot W., 1995. Large eddy simulations with wall models, Annual Research Briefs. Center for Turbulent Research, Stanford Univ./NASA Ames Research Center, 41-50.
  • 53. Cabot W., Moin P., 1999. Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow, Flow, Turbulence and Combustion, 63, 269-291.
  • 54. Chapman D.R., 1979. Computational aerodynamics development and outlook, AIAA J., 17, 1293-1313.
  • 55. Choi H., Moin P., Kim J., 1994. Active turbulence control for drag reduction in wall-bounded flows, J. Fluid Mech., 262, 75-110.
  • 56. Clark R.A., Ferziger J.H., Reynolds W.C., 1979. Evaluation of subgrid-scale models using an accurately simulated turbulent flow, J. Fluid Mech., 91, 1-16.
  • 57. Constantinescu G.S., Squires K.D., 2000. LES and DES investigation of turbulent flow over a sphere, AIAA Paper, 2000-0540, 1-11.
  • 58. Constantinescu G.S., Chapelet M.C., Squires K.D., 2001. Prediction of turbulent flow over a sphere. AIAA Journal, 26, 155-165.
  • 59. Cook A.W., Riley J.J., 1994. A subgrid model for equilibrium chemistry in turbulent flows, Phys. Fluids, 6, 2868-2870.
  • 60. Cook A.W., 1997. Determination of the constant coefficient in scale similarity models of turbulence, Phys. Fluids, 9, 1485-1487.
  • 61. Corrsin S., 1951. On the spectrum of isotropic temperature fluctuations in isotropic turbulence, J. Appl. Phys., 22, 469-473.
  • 62. Crooks J.E., 1977. Comprehensive Chemical Kinetics, Elsevier, Amsterdam.
  • 63. Curl R. L., 1963. Dispersed phase mixing: I. Theory and effects in simple reactors, AIChE J., 9, 175-181.
  • 64. Danckwerts P.V., 1958. Effects of incomplete mixing on homogeneous reaction, Chem. Eng. Sci., 8, 93-102.
  • 65. David E., 1993. Modelisation des ecoulements compressibles et hypersoniques: une approche instationnaire, PhD Thesis, INPG Grenoble.
  • 66. Davidov B.I., 1961. On the statistical dynamics of an incompressible fluid, Dokl. Akad. Nauk SSSR, 136, 47-50.
  • 67. Davidson L., 2009. Large eddy simulations: how to evaluate resolution, Int. J. Heat Fluid Flow, 30, 1016-1025.
  • 68. Deardorff J.W., 1974. Three-dimensional numerical study of turbulence in an entraining mixed layer, Boundary Layer Met., 7, 199-226.
  • 69. Deardorff J.W., 1970. A numerical study of three-dimensional turbulent channel flow at large Reynolds number, J. Fluid Mech., 41, 453-465.
  • 70. Debonis J.R., Scott J.N., 2002. Large eddy simulation of a turbulent compressible round jet, AIAA J., 40, 1346-1354.
  • 71. Demyanovich R.J., 1991. Production of commercial dyes via impingement - sheet mixing: part I. Testing of a device suitable for industrial application, Chem. Eng. Process., 29, 173-177.
  • 72. Demyanovich R.J., Bourne J.R., 1989a. Rapid micromixing by the impingement of thin liquid sheets. 1. A photographic study of the flow pattern, Ind. Eng. Chem. Res., 28, 825-830.
  • 73. Demyanovich R.J., Bourne J.R., 1989b. Rapid micromixing by the impingement of thin liquid sheets. 2. Mixing study. Ind. Eng. Chem. Res., 28, 83-39.
  • 74. Dirksen J.A., Ring T.A., 1991. Fundamentals of crystallization: kinetic effects on particle size distribution and morphology, Chem. Eng. Sci., 46, 2389-2427.
  • 75. Diurno G.V., Balaras E., Piomelli U., 2001. Wall-layer models for LES of separated flows, Modern simulation strategies for turbulent flow, ed. Geurts, Edwards, Philadelphia.
  • 76. Donaldson C. du P., 1974. On the modelling of the scalar correlations necessary to construct a second order closure description of turbulent reacting flows, Turbulent Mixing in Nonreactive and Reactive Flows (ed. S.N.B. Murthy), Plenum Press, New York.
  • 77. Du H., Fuh R.A., Li J., Corkan A., Lindsey J.S., 1998. Photochemcad: a computer-aided design and research tool in photochemistry, Photochemistry and Photobiology, 68, 141-142.
  • 78. Ducros F., Comte P., Lesieur M, 1995. Large-eddy simulation of a spatially growing boundary layer over an adiabatic flat plate at low Mach number, Int. J. of Heat and Fluid Flow, 16, 341-348.
  • 79. Fasel H., Konzelmann U., 1990. Non-parallel stability of a flat-plate boundary layer using the complete Navier-Stokes equations, J. Fluid Mech., 221, 311-347.
  • 80. Felmy A.R., Rai D., Amonette J., 1990. The solubility of barite and celestite in sodium sulfate evaluation of thermodynamic data, J. Solution Chem., 19, 175-185.
  • 81. Ferrante A., Pantano-Rubino C., Matheou G., Dimotakis P.E., Stephens M., Adams P., Walters R., Hand R., 2008. LES of an inclined jet into a supersonic cross-flow, Physics, arXiv:0810.1957vl[physics. flu-dyn], 1-4.
  • 82. Ferziger J.H., Peric M., 2002. Computational methods for fluid dynamics, Springer-Verlag, Berlin, Heidelberg, New York.
  • 83. Fisher F.V., Polifke W., 2010. Formulation and validation of an LES model for ternary mixing and reaction based on joint presumed discrete distributions, Micro and Macro Mixing, Heat and Mass Transfer, Springer Berlin Heidelberg, 185-204.
  • 84. Fox R.O., 2003. Computational models for turbulent reacting flows, Cambridge University Press, Cambridge.
  • 85. Fox R.O., 1998. On the relationship between Lagrangian micromixing models and computational fluids dynamics, Chem. Eng. Process., 37, 521-535.
  • 86. Fureby C., Tabor G., Weller H.G., Gosman A.D., 1997. A comparative study of subgrid scale models in homogeneous isotropic turbulence, Phys. Fluids, 9, 1416-1429
  • 87. Gani R., 2004. Chemical product design: challenges and opportunities, Comp. Chem. Eng., 28, 2441-2457.
  • 88. Gavi E., Marchisio D.L., Barresi A.A., Olsen M.G, Fox R.O., 2010. Turbulent precipitation in micromixers: CFD simulation and flow field validation, Chem. Eng. Res. Des. 88, 1182-1193.
  • 89. Germano M., 1992. Turbulence, the filtering approach, J. Fluid Mech. 238, 325-36.
  • 90. Germano M., Maffio A., Sello S., Mariotti G., 1997. On the extension of the dynamic modeling procedure to turbulent reacting flows, Proceedings of Second ERCOFTAC Workshop on Direct and Large Eddy Simulation, 291-300.
  • 91. Germano M., Piomelli U., Moin P., Cabot W.H., 1991. A dynamic subgridscale eddy viscosity model, Phys. Fluids A, 3, 1760-1765.
  • 92. Geurts B.J., 2004. Elements of direct and large eddy simulation, R.T. Edwards Inc., Philadelphia
  • 93. Guichardon P., Falk L., Villermaux J., 1998. Extension of a chemical method for the study of parallel chemical reactions, Chem. Eng. J., 69, 7-20.
  • 94. Guilbault G.G., 1990. Practical Fluorescence, CRC Press.
  • 95. Harlow F.H., Nakayama P.I., 1968. Transport of turbulence energy decay rate, Los Alamos Sci. Lab. Univ. California, Rep. LA-3854.
  • 96. Hassel E., Kornev N., Zhdanov V., Chorny A., Walter M., 2010. Analysis of mixing processes in jet mixers using LES, Micro and Macro Mixing, Heat and Mass Transfer, Springer Berlin Heidelberg, 165-184.
  • 97. Heinz S., Roekaerts D., 2001. Reynolds number effects on mixing and reaction in a turbulent pipe flow, Chem. Eng. Sci., 56, 3197-3210.
  • 98. Icardi M., Gavi E., Marchisio D.L., Olsen M.G., Fox R.O., Lakehal D., 2011. Validation of LES predictions for turbulent flow in a Confined Impinging Jets Reactor, Applied Mathematical Modelling, 35, 1591-1602.
  • 99. Ihme M., Pitsch H., 2005. LES of a non-premixed flame using an extended flamelet/progress variable model, 43rd AIAA Aerospace Sciences Meeting and Exhibit - Meeting Papers, 7489-7502.
  • 100. Jaworski Z., 2005. Numeryczna mechanika płynów w inżynierii chemicznej i procesowej, Akademicka Oficyna Wydawnicza EXIT.
  • 101. Jaworski z., Nienow A.W., 2003. CFD modelling of continuous precipitation of barium sulphate in a stirred tank, Chem. Eng. J., 91, 167-174.
  • 102. Jaworski Z., Nienow A.W., 2004. A strategy for solving a mathematical model of barium sulphate precipitation in a continuous stirred tank reactor, Chem. Eng. Res. Des., 82, 1089-1094.
  • 103. Jaworski Z., Nienow A.W., Dyster K.N., 1996. An LOA Study of the turbulent flow field in a baffled vessel agitated by an axial, down-pumping hydrofoil impeller, Can. J. Chem. Eng., 74, 3-15.
  • 104. Jaworski Z., Nienow A.W., Koutsakos E., Dyster K., Bujalski W., 1991. LOA study of turbulent flow in a baffled vessel agitated by a pitched blade turbine, Chem. Eng. Res. Des., 69, 313-320.
  • 105. Jiménez C., Ducros F., Cuenot B., Bédat B., 2001. Subgrid scale variance and dissipation of a scalar field in large eddy simulations, Phys. Fluids, 13, 1748-1754.
  • 106. Jiménez J., Liñán A., Rogers M.M., Higuera F.J., 1998. A priori testing of subgrid models for chemically reacting non premixed turbulent shear flows, J. Fluid Mech. 349, 149-171.
  • 107. Johnson B.K., Prud'homme R.K., 2003. Chemical processing and micromixing in Confined Impinging Jets, AIChE J., 49: 2264-2282.
  • 108. Kattan A., Adler R.S., 1972. A conceptual framework for mixing in continuous chemical reactors, Chem. Eng. Sci., 27, 1013-1028.
  • 109. Keating A., Piomelli U., Balaras E., 2004. A priori and posteriori tests of inflow conditions for Large-Eddy Simulation, Phys. Fluids, 16, 4696-4712.
  • 110. Kirby A.J., 1972. Comprehensive Chemical Kinetics, Elsevier, Amsterdam.
  • 111. Kraichnan R.H., 1970. Diffusion by a random velocity field, Phys. Fluids. 13, 22-31.
  • 112. Kresta S., Anthieren G., Persiegla K., 2005. Model reduction for precipitation of silver halide precipitation, Chem. Eng. Sci., 60: 2135-2153.
  • 113. Kurose R., Takagaki N., Michioka T., Kohno N., Komori S., 2012. Subgrid scale scalar variance in high-Schmidt-number turbulence, AIChE J., 58: 377-384.
  • 114. Launder B.E., Sandham N.D., 2002. Closure strategies for turbulent and transitional flows, Cambridge University Press, Cambridge.
  • 115. Law A.W-K., Wang H., 2000. Measurement of mixing processes with combined digital particle image velocimetry and planar laser induced fluorescence, Experimental Thermal and Fluid Science, 22, 213-229.
  • 116. Lee K.C., Yianneskis M., 1998. Turbulence properties of the impeller stream of Rushton turbine, AIChE J., 44, 13-24.
  • 117. Lee S., Lele S.K., Moin P., 1992. Simulation of spatially evolving turbulence and the application of Taylor's hypothesis in compressible flow, Phys. Fluids A, 4, 1521-1530.
  • 118. Leonard A., 1974. Energy cascade in large-eddy simulations of turbulent fluid flows, Adv. in Geophys., 18, 237-248.
  • 119. Lesieur M., 1997. Turbulence in fluids, 3rd edition, Kluwer.
  • 120. Levenspiel O., 1972. Chemical Reaction Engineering, Wiley, New York
  • 121. Lilly D.K., 1967. The representation of small-scale turbulence in numerical simulation experiments, IBM Scientific Computing Symposium on environmental sciences, 195-210.
  • 122. Lilly D.K., 1992. A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A, 4, 633-635.
  • 123. Lince F., Marchisio D.L., Barresi A.A., 2008. Strategies to control the particle size distribution of poly-ε-caprolactone nanoparticles for pharmaceutical applications. Journal of Colloid and Interface Science, 322, 505-515.
  • 124. Lund T.S., Wu X., Squires K.D., 1998. Generation of turbulent in flow data for spatially-developing boundary layer simulations, J. Comput. Phys., 140, 233-258.
  • 125. Macosko C.W., 1989. Fundamentals of reaction injection molding, Hanser, New York.
  • 126. Makowski Ł., Bałdyga J., 2010a. Zastosowanie modeli wielkowirowych do symulacji przebiegu złożonych reakcji chemicznych, Inż. i Ap. Chem., nr 2, 77-79.
  • 127. Makowski Ł., 2002. Zastosowanie hipotezy zamykającej oraz oprogramowania CFD do opisu przebiegu złożonych reakcji chemicznych w układach z przepływem burzliwym, praca doktorska, Politechnika Warszawska
  • 128. Makowski Ł., Bałdyga J., 2010b. Large eddy simulation of mixing effects on the course of parallel chemical reactions, Proceedings of 19th International Congress of Chemical and Process Engineering CHISA and the 7th European Congress of Chemical Engineering.
  • 129. Makowski Ł., Bałdyga J., 2011. Large eddy simulation of mixing effects on the course of parallel chemical reactions, Chem. Eng. Process., 50, 1035-1040.
  • 130. Makowski Ł., Orciuch W., 2009a. Dobór warunków mieszania w kontroli przebiegu złożonych reakcji chemicznych, Inż. Ap. Chem., 5, 71-73.
  • 131. Makowski Ł., Orciuch W., 2009b. Wpływ mieszania na precypitację siarczanu baru w reaktorze przepływowym z dozowaniem poprzecznym, Inż. Ap. Chem., 6, 117-119.
  • 132. Makowski Ł., Orciuch W., 2011. Local distributions of fluid velocity and tracer concentration in a tank reactor, Chem. Proc. Eng., 32, 33-40.
  • 133. Makowski Ł., Orciuch W., Bałdyga J., 2011. Large eddy simulation of mixing effects on the course of precipitation process, Proceedings of 18th International Symposium on Industrial Crystallization, 147-148.
  • 134. Makowski Ł., Orciuch W., Bałdyga J., 2012a. Large eddy simulations of mixing effects on the course of precipitation process, Chem. Eng. Sci., 77, 85-97.
  • 135. Makowski Ł., Orciuch W., Wojtas K., 2012b. A comparison of subgrid closure method for passive scalar dynamics, Proceedings of the 14th European Conference on Mixing, 275-280.
  • 136. Marchisio D.L., 2009. Large eddy simulation of mixing and reaction in a Confined Impinging Jets reactor, Comput. Chem. Eng, 33, 408-420.
  • 137. Marchisio D.L., Omegna F., Barresi A.A., 2008. Effect of mixing and scale up issues in sol-gel processes, Ind. Eng. Chem. Res., 47, 7202-7210.
  • 138. McMillan O.J., Ferziger J.H., Rogallio R.S., 1980. Tests of new subgrid-scale model of strained turbulence, AIAA Paper, 80, 1339-1350.
  • 139. Meneveau C., Katz J., 2000. Scale-invariance and turbulent models for large-eddy simulations, Annu. Rev. Fluid Mech., 32, 1-32.
  • 140. Métais O., Lesieur M., 1992. Spectral large-eddy simulations of isotropic and stably-stratified turbulence, J. Fluid Mech., 239, 157-194.
  • 141. Methot J.C., Roy P.H., 1971. Segregation effects on homogeneous second-order reactions, Chem. Eng. Sci., 26, 569-576.
  • 142. Michioka T., Komori S., 2004. Large-eddy simulation of a turbulent reacting liquid flow, AIChE J., 50, 2705-2720
  • 143. Midler M., Paul E.L., Whittington E.F., Futran M., Liu P.D., Hsu J., Pan S.H., 1994. Crystallization method to improve crystal structure and size, U.S. Patent No. 5, 314, 506.
  • 144. Moggridge G.D., Cussler E.L., 2000. An introduction to chemical product design, Trans IchemE, 78, 5-11.
  • 145. Moin P., Squires K., Cabot W., Lee S., 1991. A dynamic subgrid-scale model for compressible turbulence and scalar transport, Phys. Fluids A, 3, 2746-2757.
  • 146. Monnin C., 1999. A thermodynamic model for the solubility of barite and celestite in electrolyte solutions and seawater to 200 degrees C and to 1 kbar, Chemical Geology, 153, 187-209.
  • 147. Mortensen M., Orciuch W., Bouaifi M., Andersson B., 2004. Mixing of a jet in a pipe, Chem. Eng. Res. Des., 82, 357-363.
  • 148. Moskal A., Makowski Ł., Sosonowski R.T., Gradoń L., 2006. Deposition of fractal-like aerosol aggregates in a model of human nasal cavity, Inhalation Toxicology, 18, 725-731.
  • 149. Muchinski A., 1996. A similarity theory of locally homogeneous and isotropic turbulence generated by a Smagorinsky-type LES, J. Fluid Mech., 325, 239-260.
  • 150. Nagata S., 1975. Mixing - principles and applications, A Halsted Press Book.
  • 151. Ng D.Y.C., Rippin D.W.T., 1965, The effect of incomplete mixing on conversion in homogeneous reactions, Proceedings of 3rd European Symp. Chem. Reaction Eng., Pergamon-London, 161-165, Supplement to Chem. Eng. Sci., 20, 161.
  • 152. Nielsen A.E., 1964. Kinetics of Precipitation, Pergamon Press.
  • 153. Nielsen A. E., 1969. Nucleation and growth of crystals at high supersaturation, Kristall und Technik, 4, 17-38.
  • 154. Nielsen A.E., Toft J.M., 1984. Electrolyte crystal growth kinetics, J. Crystal Growth, 67, 278-288.
  • 155. Nishimura Y., Matsubara M., 1970. Micromixing theory via the two environment model, Chem. Eng. Sci., 25, 1785-1797.
  • 156. Obukhov A.M., 1949. Structure of the temperature field in turbulent flow, Izv. Akad. Nauk SSSR, Geogr. and Geophys. Ser., 13, 58-69.
  • 157. Okamoto Y., Nishikawa M., Hashimoto K., 1981. Energy dissipation rate distribution in mixing vessels and its effect on liquid-liquid dispersion and solid-solid mass transfer, Inż. Chem. Eng., 21, 88-94.
  • 158. Orciuch W., Makowski Ł., Bałdyga J., 2006. Wpływ mieszania na precypitację prowadzoną w reaktorze o działaniu półokresowym, Inż. Ap. Chem., 6, 170-172.
  • 159. Orciuch W., Makowski Ł., Moskal A., Gradoń L., 2012. Evolution of the droplet size distribution during a two-phase flow through a porous media: Population balance studies, Chem. Eng. Sci., 68, 227-235.
  • 160. Pantakar S.V., 1980. Numerical heat transfer and fluid flow, Hemisphere Publishing Corporation, Washington.
  • 161. Pantangi P., Huai Y., Sadiki A., 2010. Mixing analysis and optimization in jet mixer systems by means of large eddy simulation, Micro and Macro Mixing, Heat and Mass Transfer, Springer Berlin Heidelberg, 205-226.
  • 162. Patterson G.K., 1985. Modelling of turbulent reactors, Mixing of liquids by Mechanical Agitation, 59-91.
  • 163. Paul E.L., Atiemo-Obeng V.A., Kresta S.M., 2004. Handbook of Industrial Mixing - Science and Practice, John Wiley & Sons.
  • 164. Philips R., Rohani S., Bałdyga J., 1999. Micromixing in a single-feed semi-batch precipitation process, AIChE J., 45, 82-92.
  • 165. Pierce C.D., Moin P.A., 1998. Dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar, Phys Fluids., 10, 3041-3044.
  • 166. Piomelli U., 2000. Large-eddy and direct simulation of turbulent flows, von Karman Institute for Fluid Dynamics Lecture Series.
  • 167. Piomelli U., Balaras B., 2002. Wall-layer models for large-eddy simulations, Annu. Rev. Fluid Mech. 34, 349-74.
  • 168. Piomelli U., Ferziger J.H., Moin P., Kim J., 1989. New approximate boundary conditions for large eddy simulations of wall-bounded flows, Phys. Fluids A, 1, 1061-1068.
  • 169. Pitzer K., 1991. Activity coefficients in electrolyte solutions, CRC Press, Boca Raton, USA.
  • 170. Podgórska W., 1993. Wpływ mikromieszania na precypitację, rozprawa doktorska, Politechnika Warszawska.
  • 171. Pope S.B., 1980. Probability distributions of scalars in turbulent shear flow, Turbulent Shear Flows 2 (ed. L.S.S. Bradbury, F. Durst, B.E. Launder, F.W. Schmidt, J.H. Whitelaw), Springer-Verlag, Berlin, Heidelberg, New York, 7-17.
  • 172. Pope S.B., 2000. Turbulent Flows, Cambridge University Press, Cambridge.
  • 173. Pope S.B., 2004. Ten questions concerning the large-eddy simulations of turbulent flows, New Journal of Physics, 6, 1-24.
  • 174. Prandtl L., 1925. Bericht über Untersuchungen zur ausgebildeten Turbulenz, Zs. Angew. Math. Mech., 5, 136-169.
  • 175. Raffel M., Willert C.E., Wereley S.T., Kompenhans J., 2007. Particle image velocimetry a practical guide, Springer 2007.
  • 176. Rai M.M., Moin P., 1993. Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer, J. Comput. Phys., 109, 169-192.
  • 177. Reveillon J., Verisch L., 1996. Response of the dynamic LES model to heat release induced effects, Phys. Fluids 8, 2248-2251.
  • 178. Reynolds W.C., 1990. The potential and limitations of direct and large eddy simulations in Whither Turbulence?, Turbulence at the Crossroads (ed. J.L. Lumley), Springer-Verlag, Berlin, 313-343.
  • 179. Richardson L.F., 1922. Weather Prediction by Numerical Process, Cambridge University Press, Cambridge.
  • 180. Rizzetta D.P., Visbal M.R., 2007. Numerical investigation of plasma-based flow control for transitional highly loaded low-pressure turbine, AIAA Journal, 45, 2554-2564.
  • 181. Rożen A., Bakker R.A., Bałdyga J., 2001. Effect of operating parameters and screw geometry on micromixing in a co-rotating twin-screw extruder, Chem. Eng. Res. Des., 79 A, 938-942.
  • 182. Rożen A., 2008. Mikromieszanie płynów różniących się lepkością w układach z przepływem laminarnym, prace naukowe Inżynierii Chemicznej i Procesowej, Politechniki Warszawskiej, Warszawa.
  • 183. Sagaut P., 2001. Large eddy simulations for incompressible flows: An introduction, Springer, Berlin.
  • 184. Sagaut P., Garnier E., Tromeur E., Larcheveque L., Labourasse E., 2004. Turbulent in flow conditions for large eddy simulation of compressible wall-bounded flows, AIAA J., 42, 469-477.
  • 185. Schemm C.E, Lipps F.B., 1976. Some results of a simplified three-dimensional numerical methods of atmospheric turbulence, J. Atmos. Sci., 33, 1021-1041
  • 186. Schmidt H., Schumann U., 1989. Coherent structure of the convective boundary layer derived from large-eddy simulations, J. Fluid Mech., 200, 511-562.
  • 187. Schumann U., 1975. Subgrid scale model for finite - difference simulations of turbulent flows in plane channels and annuli, J. Comput. Phys., 18, 376-404.
  • 188. Schwertfirm F., Manhart M., 2010. A numerical approach for simulation of turbulent mixing and chemical reaction at high Schmidt numbers, Micro and Macro Mixing Heat and Mass Transfer, 305-324.
  • 189. Smagorinsky J.S., 1963. General circulation experiments with the primitive equations, Mon. Weather Review, 91, 99-164.
  • 190. Sommeria G., 1976. Three-dimensional simulation of turbulent processes in an undisturbed trade wind boundary layer, J. Atmos. Sci., 33, 216-241.
  • 191. Spalart P.R., 1988. Direct simulation of a turbulent boundary layer up to Rθ = 1410, J. Fluid Mech., 187, 61-98.
  • 192. Spalart P.R., Allmaras S.R., 1994. A one-equation turbulence model for aerodynamic flows, Rech. Aerosp., 1, 5-21.
  • 193. Spalart P.R., Jou W.H., Strelets M, Allmaras S.R., 1997. Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach, Advances in DNS/LES (ed. C. Liu, Z. Liu), Columbus, OH: Greyden, 137-48.
  • 194. Spielman L.A., Levenspiel O., 1965. A Monte Carlo treatment of reacting and coalescing dispersed phase systems, Chem. Eng. Sci., 20, 247- 254.
  • 195. Tannekes H., Lumley J.L., 1972. A first course in turbulence, MIT Press, Cambridge.
  • 196. Tolgyesi W.S., 1965. Relative reactivity of toluene-benzene in nitronium tetrafluoroborate nitration, Can. J. Chem., 43, 343-355.
  • 197. Toor H.L., 1962. Turbulent mixing of two species with and without chemical reactions, Ind. Eng. Chem. Fundam., 8, 655-659.
  • 198. Townsend A.A., 1951. The diffusion of heat spots in isotropic turbulence, Proc. R. Soc. Lond. A, 209, 418-430.
  • 199. Vicum L., Mazzotti M., Bałdyga J., 2003. Applying a thermodynamic model to the non-stoichiometric precipitation of barium sulfate, Chem. Eng. Tech., 26, 325-333.
  • 200. Vicum L., Ottiger S., Mazzotti M., Makowski Ł., Bałdyga J., 2004. Multi-scale modelling of a reactive mixing process in a semibatch stirred tank, Chem. Eng. Sci., 59, 1767-1781.
  • 201. Villermaux J., 1986. Micromixing phenomena an stirred reactors. Chapter 27 in „Encyclopedia of Fluid Mechanics” Vol. 2, N.P. Cheremisinoff ed., Gulf Publishing.
  • 202. Villermaux J., Devillon J.C., 1972. Représentation de la coalescence et de la redispersion des domaines de ségrégation dans un fluide per modéle d'interaction phénoménologique. Proceed 2nd Ind. Symp. Chem. React. Engin. Amsterdam. B 1.
  • 203. Visbal M.R., Gaitonde D.V., Roy S., 2006. Control of transitional and turbulent flows using plasma based actuators, AIAA Fluid Dynamics and Flow Control Conference, 3230.
  • 204. Wei H., Garside J., 1997. CFD-simulation of precipitation in stirred tanks, Proceedings of the IChemE Jubilee Research Event Noningham, 517-520.
  • 205. Wei H., Garstde J., 1999. Simulations and scale-up of precipitation processes using CFD techniques, Proceedings of 3rd International Symposium on Mixing in Industry, 45-52.
  • 206. Wong V., Lilly D.K., 1994. A comparison of two subgrid closure methods for turbulent thermal convection, Phys. Fluids, 6, 1017-1023.
  • 207. Wood P.B., Higginson W.C.E., 1966. Kinetic studies of oxydation-reduction of cobalt-EDTA complexes, J. Chem. Soc. A, 1645-1652.
  • 208. Woo-Sik K., Tarbell J., 1996. Micromixing effects on barium sulphate precipitation in an MSMPR reactor, Chem. Eng. Comm., 146, 33-56.
  • 209. Wu H., Patterson G.K., 1989. Laser-Doppler measurements of turbulent-flow parameters in a stirred mixer, Chem. Eng. Sci., 44, 2207-2221.
  • 210. Yoshizawa A., 1988. Statistical modeling of passive scalar diffusion in turbulent shear flow, Journal of Fluid Mechanics, 195, 544-555.
  • 211. Yu S., 1993. Micromixing and parallel reactions, PhD dissertation No. 10160. ETH Zürich.
  • 212. Zator S., 2007. Laserowe przepływomierze dopplerowskie, Oficyna Wydawnicza Politechniki Opolskiej, Opole.
  • 213. Zwietering T.V., 1959. The degree of mixing in continuous flow systems, Chem. Eng. Sci. 11, 1-15
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e81c1632-9e35-47ad-ac4d-b8af16a60306
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.