PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

NORM-related industrial activities in Estonia - establishing national NORM inventory

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There is incomplete information available concerning NORM-related (naturally occurring radioactive material) industries in Estonia. In order to fill the gap in this knowledge, a nationwide study was carried out between 2015 and 2017 to determine and radiologically characterize potential NORM-related industries. The study included compiling available literature and studies as well as on-site measurements (external dose rate and radon) and samplings in multiple industries, which had been determined to be potential NORM creators. The results from this study concluded that there are 3 industries in Estonia where the activity concentrations of naturally occurring radionuclides can reach an increased level which may require further regulatory control. Radionuclide exemption values were clearly exceeded in the filter materials of drinking water treatment plants that use water from Cambrian-Vendian aquifer. 226Ra and 228Ra values in filter materials reached over 40 kBq kg−1. Additionally, the gross radionuclide activity concentrations of 238U and 232Th in waste from a rare metal production industry reached up to 191 kBq kg−1. Clinker dust from the cement industry showed elevated concentrations of 210Pb, rising to over 2 kBq kg−1 in fine clinker dust. The creation of a national NORM inventory can be the basis for establishing a national NORM strategy for the management of NORM residues. This work provides a thorough overview of the radiological parameters of the potential NORM-related industries, describes the radionuclides that have elevated concentrations, provides estimations on their yearly creation amounts and produces input for determining possible NORM management options.
Rocznik
Strony
86--93
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
  • Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
autor
  • Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
autor
  • Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
  • Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
  • Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
autor
  • Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
Bibliografia
  • 1. Charro, E., & Pena, V. (2013). Environmental impact of natural radionuclides from a coalfired power plant in Spain. Radiation Protection Dosimetry, 153(4), 485-495. http:// doi.org/10.1093/rpd/ncs126.
  • 2. Cutshall, N. H., Larsen, I. L., & Olsen, C. R. (1983). Direct analysis of 210Pb in sediment samples: Self-absorption corrections. Nuclear Instruments and Methods in Physics Research, 206(1-2), 309-312. http://doi.org/10.1016/0167-5087(83)91273-5.
  • 3. Erlandsson, B., Hedvall, R., & Mattsson, S. (1995). Radionuclide concentration in fuels and ash products from biofuel heating plantsSweden: University of Lund Report 02/95, LUNFD6/(NFFR-3067).
  • 4. European Commission (2001). Radiation protection 122 - Practical use of the concepts of clearance and exemption(Part II).
  • 5. European Parliament (2014). Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/ 29/Euratom, 97/43/Euratom a. Off J Eur Commun L13.
  • 6. Flues, M., Camargo, I. M. C., Figueiredo Filho, P. M., Silva, P. S. C., & Mazzilli, B. P. (2007). Evaluation of radionuclides concentration in Brazilian coals. Fuel, 86(5-6), 807-812. http://doi.org/10.1016/j.fuel.2006.09.013.
  • 7. Forte, M., Bagnato, L., Caldognetto, E., Risica, S., Trotti, F., & Rusconi, R. (2010). Radium isotopes in Estonian groundwater: Measurements, analytical correlations, population dose and a proposal for a monitoring strategy. Journal of Radiological Protection, 30(4), 761-780. http://doi.org/10.1088/0952-4746/30/4/009.
  • 8. Hill, L., Suursoo, S., Kiisk, M., Jantsikene, A., Nilb, N., Munter, R., ... Isakar, K. (2018). Long-term monitoring of water treatment technology designed for radium removal - removal efficiencies and NORM formation. Journal of Radiological Protection, 38(1), 1-24. http://doi.org/10.1088/1361-6498/aa97f2.
  • 9. IAEA (1987). Preparation and Certification of IAEA Gamma Ray Spectrometry Reference Materials RGU-1, RGTh-1 and RGK-1. Vienna.
  • 10. IAEA (2003). Extent of Environmental Contamination By Naturally Occurring Radioactive Material (Norm) and Technological Options for Mitigation. TECHNICAL REPORTS SERIES No. 419. Retrieved April 1, 2017 from http://www-pub.iaea.org/MTCD/publications/PDF/TRS419_web.pdf.
  • 11. IAEA (2013). Management of NORM Residues - IAEA-TECDOC-1712. Vienna.
  • 12. Jantsikene, A., Kiisk, M., Suursoo, S., Koch, R., & Lumiste, L. (2014). Groundwater treatment as a source of indoor radon. Applied Radiation and Isotopes, 93, 70-75. http://doi.org/10.1016/j.apradiso.2014.01.006.
  • 13. Karangelos, D. J., Petropoulos, N. P., Anagnostakis, M. J., Hinis, E. P., & Simopoulos, S. E. (2004). Radiological characteristics and investigation of the radioactive equilibrium in the ashes produced in lignite-fired power plants. Journal of Environmental Radioactivity, 77(3), 233-246. http://doi.org/10.1016/j.jenvrad.2004.03.009.
  • 14. Kiisk, M., Suursoo, S., Isakar, K., & Koch, R. (2011). Relevant radionuclides in Estonian drinking and ground waters - measurement techniques and activity concentrations. Radioprotection, 46(6), S107-S112. http://doi.org/10.1051/radiopro/20116826s.
  • 15. Leier, M., & Kiisk, M. (2015). Formation of radioactive waste in Estonian water treatment plants. Tartu: Project no. 7939 of Environnmental Investment Centre (in Estonian).
  • 16. Leier, M., Kiisk, M., Suursoo, S., Vaasma, T., & Putk, K. (2019). Formation of radioactive waste in Estonian water treatment plants. Journal of Radiological Protection, 39(1), 1-10. http://doi.org/10.1088/1361-6498/aaed49.
  • 17. Lumiste, L., Munter, R., Sutt, J., Kivimae, T., & Eensalu, T. (2012). Radioactivity of Estonian groundwater and technology for its removal. WIT Transactions on Ecology and the Environment, 164, 211-221. http://doi.org/10.2495/WP120181.
  • 18. Ozden, B., Guler, E., Vaasma, T., Horvath, M., Kiisk, M., & Kovacs, T. (2017). Enrichment of naturally occurring radionuclides and trace elements in Yatagan and Yenikoy coalfired thermal power plants, Turkey. Journal of Environmental Radioactivity, 188, 100-107. http://doi.org/10.1016/j.jenvrad.2017.09.016.
  • 19. Pepin, S., Biermans, G., Dehandschutter, B., & Sonck, M. (2016). How will Belgium implement the European directive with regard to NORM ? BVS-ABR meeting “Why should we be concerned about NORM?” (pp. 1-9). Brussels.
  • 20. Pepin, S., Dehandschutter, B., Poffijn, A., & Sonck, M. (2013). Regulatory framework for NORM residues in Belgium. Proceedings of the ASME 2013 15th International Conference on Environmental Remediation and Radioactive Waste Management ICEM2013 (pp. 1-3). New York: American Soceity of Mechanical Engineers.
  • 21. Rantavaara, A., & Moring, M. (2001). Radioactivity of wood ash. STUK report A177Helsinki: Radiation and Nuclear Safety Authority (in Finnish).
  • 22. Realo, K., & Realo, E. (1999). 210Pb and 238U in Estonian fuel products and ashes. In J. Søgaard-Hansen, & A. Damkjær (Eds.). Nordic Society for Radiation Protection : proceedings of the 12th ordinary meeting. Skagen, Denmark: IRPA. Retrieved May 2, 2016 from https://inis.iaea.org/search/search.aspx?orig_q=RN:31016425.
  • 23. Realo, E., Realo, K., & Jogi, J. (1996). Releases of natural radionuclides from oil-shalefired power plants in Estonia. Journal of Environmental Radioactivity, 33(1), 77-89. http://doi.org/10.1016/0265-931X(95)00088-R.
  • 24. Schroeyers, W., Sas, Z., Bator, G., Trevisi, R., Nuccetelli, C., Leonardi, F., ... Kovacs, T. (2018). The NORM4Building database, a tool for radiological assessment when using by-products in building materials. Construction and Building Materials, 159, 755-767. http://doi.org/10.1016/j.conbuildmat.2017.11.037.
  • 25. Suhana, J., & Rashid, M. (2016). Naturally occurring radionuclides in particulate emission from a coal fired power plant: A potential contamination? Journal of Environmental Chemical Engineering, 4(4B), 4904-4910. Elsevier B.V http://doi.org/10.1016/j.jece.2016.07.015.
  • 26. UNSCEAR (2010). United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation. Volume I: Sources. 2008 Report to the General Assembly, with scientific annexes: Vol. I New York.
  • 27. Vaasma, T., Bityukova, L., Kiisk, M., Ozden, B., & Tkaczyk, A. H. (2016). Behaviour mechanisms and correlation between lead (Pb) and its isotope 210 Pb in industrial residue as an indicator for waste characterization. Environmental Technology, 37(24), 3208-3218. http://doi.org/10.1080/09593330.2016.1181673.
  • 28. Vaasma, T., Kaasik, M., Loosaar, J., Kiisk, M., & Tkaczyk, A. H. (2017a). Long-term modelling of fly ash and radionuclide emissions as well as deposition fluxes due to the operation of large oil shale-fired power plants. Journal of Environmental Radioactivity, 178(179), 232-244. http://doi.org/10.1016/j.jenvrad.2017.08.017.
  • 29. Vaasma, T., Karu, H., Kiisk, M., Pensa, M., Isakar, K., Realo, E., ... Tkaczyk, A. H. (2017b). Pb-210 and fly ash particles in ombrotrophic peat bogs as indicators of industrial emissions. Journal of Environmental Radioactivity, 174, 78-86. http://doi.org/10.1016/j.jenvrad.2016.07.027.
  • 30. Vaasma, T., Kiisk, M., Meriste, T., & Tkaczyk, A. H. (2014a). The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants. Journal of Environmental Radioactivity, 138, 427-433. http://doi.org/10.1016/j.jenvrad.2014. 02.027.
  • 31. Vaasma, T., Kiisk, M., Meriste, T., & Tkaczyk, A. H. (2014b). The enrichment of natural radionuclides in oil shale-fired power plants in Estonia - The impact of new circulating fluidized bed technology. Journal of Environmental Radioactivity, 129, 133-139. http://doi.org/10.1016/j.jenvrad.2014.01.002.
  • 32. Vaasma, T., Loosaar, J., Gyakwaa, F., Kiisk, M., Ozden, B., & Tkaczyk, A. H. (2017c). Pb- 210 and Po-210 atmospheric releases via fly ash from oil shale-fired power plants. Environmental Pollution, 222, 210-218. http://doi.org/10.1016/j.envpol.2016.12.054.
  • 33. Vaasma, T., Loosaar, J., Kiisk, M., & Tkaczyk, A. H. (2017d). Radionuclide concentration variations in the fuel and residues of oil shale-fired power plants: Estimations of the radiological characteristics over a 2-year period. Journal of Environmental Radioactivity, 173, 25-33. http://doi.org/10.1016/j.jenvrad.2016.10.005.
  • 34. Vaičiukyniene, D., Michalik, B., Bonczyk, M., Vaičiukynas, V., Kantautas, A., & Krulikauskaite, J. (2018). Zeolitized bottom ashes from biomass combustion as cement replacing components. Construction and Building Materials, 168, 988-994. http://doi.org/10.1016/j.conbuildmat.2018.02.057.
  • 35. Vreček, P., & Benedik, L. (2003). 210Pb and 210Po in fossil fuel combustion at the Šoštanj thermal power plant (Slovenia). Czechoslovak Journal of Physics, 53(S1), A51-A55. http://doi.org/10.1007/s10582-003-0009-8.
  • 36. Zeevaert, T., Sweeck, L., & Vanmarcke, H. (2006). The radiological impact from airborne routine discharges of a modern coal-fired power plant. Journal of Environmental Radioactivity, 85(1), 1-22. http://doi.org/10.1016/j.jenvrad.2005.04.015.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e815f19d-2b33-4cac-9b2e-2b45cb585e42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.