PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Iron impact on the quality of sand casting made from secondary AlSi7Mg0.6 alloy used in the automotive and aerospace industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the high demand for secondary alloys in the automotive and aerospace industry, this work investigates the effect of higher iron content on the quality of AlSi7Mg0.6 sand castings. Secondary-recycled Al-Si alloys contain an increased amount of impurities due to their remelting of scrap metal. One of the most unwanted impurities found in these alloys is iron. Iron leads to the formation of various Fe-rich intermetallic phases, whose morphology influences the mechanical properties even at low Fe content. It also promotes the formation of casting defects, such as porosity and shrinkage. The formation of porosity in secondary Al-alloys is another major aspect that can affect the final properties of castings. Since these materials are mainly used to produce castings for the automotive industry, such as engine blocks, cylinder heads, and so on, it is necessary to produce castings without any defects. Therefore, the quality of AlSi7Mg0.6 sand casting is investigated at lower iron content (0.128% wt. Fe) and compared to the higher iron content (0.429% wt. Fe), whereby a correlation between iron content and porosity is monitored.
Rocznik
Strony
86--91
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  • University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
autor
  • University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  • University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
Bibliografia
  • 1. Abdelaziz, M.H., Samuel, A.M., Doty, H.W., Songmene, V. & Samuel, F.H. (2022) Mechanical performance and precipitation behavior in Al-Si-Cu-Mg cast alloys: Effect of prolonged thermal exposure. Materials 15(8), 2830.
  • 2. Bacaicoa, I., Luetje, M., Zeismann, F., Geisert, A., Fehlbier, M. & Brueckner-Foit, A. (2019) On the role of Fe-content on the damage behavior of an Al-Si-Cu alloy. Procedia Structural Integrity 23, pp. 33–38.
  • 3. Bogdanoff, T., Lattanzi, L., Merlin, M., Ghassemali, E., Jarfors, A.E.W. & Seifeddine, S. (2021) The complex interaction between microstructural features and crack evolution during cyclic testing in heat-treated Al–Si–Mg–Cu cast alloys. Materials Science and Engineering: A 825, 141930.
  • 4. Brueckner-Foit, A., Luetje, M., Bacaicoa, I., Geisert, A. & Fehlbier, M. (2017) On the role of internal defects in the fatigue damage process of a cast Al-Si-Cu alloy. Procedia Structural Integrity 7, pp. 36-43, doi: 10.1016/j.prostr. 2017.11.058.
  • 5. Davor, S., Špada, V. & Ilkic, D. (2019) Influence of natural aging on the mechanical properties of high pressure die casting (HPDC) EN AC 46000-AlSi9Cu3(Fe) Al alloy. Materials Testing 61(5), pp. 448–454.
  • 6. EAA/OEA (2006) Aluminum Recycling in Europe. [Online]. Available from: brochure available online https://recycling. world-aluminium.org/fileadmin/_migrated/content_uploads /fl0000217_04.pdf [Accessed: October 21, 2022].
  • 7. Farkašová, M., Tillová, E. & Chalupová, M. (2013) Fracture surface of recycled AlSi10Mg cast alloy. Manufacturing Technology 13(3), pp. 307–313.
  • 8. Fiochci, J., Biffi, C.A. & Tuissi, A. (2020) Selective laser melting of high-strength primary AlSi9Cu3 alloy: Processability, microstructure, and mechanical properties. Materials & Design 191, 108581.
  • 9. Hirsch, S.J., Winter, L., Grund, T. & Lampke, T. (2022) Heat treatment influencing porosity and tensile properties of field assisted sintered AlSi7Mg0.6. Materials 15(7), 2503.
  • 10. Kasala, J., Pernis, R., Pernis, I. & Ličková, M. (2011) Influence of iron and manganese quality on pore level in the Al-Si-Cu. Chem. Letters 105, pp. 627–629 [in Slovak].
  • 11. Kuchariková, L., Tillová, E. & Chalupová, M. (2016) The Si particles morphology in hypoeutectic Al-Si casts. Materials Today: Proceedings 3(4), pp. 1031–1036.
  • 12. Kuchariková, L., Tillová, E., Chalupová, M. & Hanusová, P. (2020) Investigation on microstructural and hardness evaluation in heat-treated and as-cast state of secondary AlSiMg cast alloys. Materials Today: Proceedings 32, Part 2, pp. 63–67.
  • 13. Li, Y., Hu, A., Fu, Y., Liu, S., Shen, W., Hu, H. & Nie, X. (2022) Al alloys and casting processes for induction motor applications in battery-powered electric vehicles: A review. Metals 12(2), 216.
  • 14. Mae, H., Teng, X., Bai, Y. & Wierzbicki, T. (2008) Comparison of ductile fracture properties of aluminum castings: Sand mold vs. metal mold. International Journal of Solids and Structures 45(5), pp. 1430–1444.
  • 15. Puncreobutr, C., Lee, P.D., Kareh, K.M., Connolley, T., Fife, J.L. & Phillion, A.B. (2014) Influence of Fe-rich intermetallics on solidification defects in Al–Si–Cu alloys. Acta Materialia 68, pp. 42–51.
  • 16. Reyes, A.E.S., Guerrero, G.A., Ortiz, G.R., Gasga, J.R., Robledo, J.F.G., Flores, O.L. & Costa, P.S. (2020) Microstructural, microscratch and nanohardness mechanical characterization of secondary commercial HPDC AlSi9Cu3-type alloy. Journal of Materials Research and Technology 9(4), pp. 8266–8282.
  • 17. Song, D.-F., Zhao, Y.-L., Wang, Z., Jia, Y.-W., Li, D.-X., Fu, Y.-N., Zhang, D.-T. & Zhang, W.-W. (2022) 3D Ferich phases evolution and its effects on the fracture behavior of Al-7.0Si-1.2Fe alloys by Mn neutralization. Acta Metallurgica Sinica (English Letters) 35(1), pp. 163–175.
  • 18. Svobodova, J., Lunak, M. & Lattner, M. (2019) Analysis of the increased iron content on the corrosion resistance of the AlSi7Mg0.3 alloy casting. Manufacturing Technology 19(6), pp. 1041–1046.
  • 19. Taylor, J.A., Caceres, C.H. & Crepel, L. (2008) The effect of Si and Cu content on Fe-containing intermetallic particles in Al-Si-Cu0.8Fe alloys. 11th International Conference of Aluminium Alloys (ICAA11), 22–26 September 2008, Aachen, Germany, pp. 105–114.
  • 20. Tillová, E., Chalupová, M. & Kuchariková, L. (2012) Evolution of phases in a recycled Al-Si cast alloy during solution treatment. In: Kazmiruk, V. (ed.) Scanning Electron Microscopy, doi: 10.5772/34542.
  • 21. Tillová, E., Chalupová, M., Kuchariková, L., Švecová, I. & Belan, J. (2019) Sludge phases as a cause of higher wear of cutting tools during machining of secondary AlSi12Cu1 castings. Manufacturing Technology 19(5), pp. 874–879.
  • 22. Tisza, M. & Czinege, I. (2018) Comparative study of the application of steels and aluminum in lightweight production of automotive parts. International Journal of Lightweight Materials and Manufacture 1(4), pp. 229–238.
  • 23. World Aluminum (2015) Coal-based production and global average: Life cycle inventory data and environmental metrics for the primary aluminum industry. [Online]. Available from: https://fluoridealert.org/wp-content/uploads/aluminum. life-cycle.2015.pdf [Accessed: October 21, 2022].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e80e1bbc-9ef4-4c26-8f40-e94cb12e2e5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.