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This article presents a two-dimensional steady viscous flow simulation past circular and square cylinders at 
low Reynolds numbers (based on the diameter) by the finite volume method with a non-orthogonal body-fitted 
grid. Diffusive fluxes are discretized using central differencing scheme, and for convective fluxes upwind and 
central differencing schemes are blended using a ‘deferred correction’ approach. A simplified pressure correction 
equation is derived, and proper under-relaxation factors are used so that computational cost is reduced without 
adversely affecting the convergence rate. The governing equations are expressed in Cartesian velocity 
components and solution is carried out using the SIMPLE algorithm for collocated arrangement of variables. The 
mesh yielding grid-independent solution is then utilized to study, for the very first time, the effect of the Reynolds 
number on the separation bubble length, separation angle, and drag coefficients for both circular and square 
cylinders. Finally, functional relationships between the computed quantities and Reynolds number (Re) are 
proposed up to Re = 40. It is found that circular cylinder separation commences between Re= 6.5-6.6, and the 
bubble length, separation angle, total drag vary as Re, Re-0.5, Re-0.5 respectively. Extrapolated results obtained 
from the empirical relations for the circular cylinder show an excellent agreement with established data from the 
literature. For a square cylinder, the bubble length and total drag are found to vary as Re and Re-0.666, and are 
greater than these for a circular cylinder at a given Reynolds number. The numerical results substantiate that a 
square shaped cylinder is more bluff than a circular one. 
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1. Introduction 
 

A basic flow of great practical importance is a bluff body flow, taking place in a number of situations 
including moving vehicles such as cars or boats, airplanes, or flow around stationary objects such as 
buildings, offshore structures or cables where significant regions of a separated flow are generated. One 
classical bluff body problem in fluid mechanics is the flow past a circular cylinder. It has attracted the 
attention of many scientists and researchers owing to its application in many engineering problems such as 
hydrodynamic loading on ocean marine piles and offshore platform risers and support legs, and also because 
it can form a baseline case of more complex flows. 

The cylinder flow has been investigated for more than one century, starting with the fundamental 
work of Strouhal [1] on the dependency between frequency of vortex shedding, free-stream velocity, and 
cylinder diameter. Nisi and Porter [2] carried out pioneering experimental investigation using smoke 
visualization and found the separation Reynolds number, Re .s 3 2 . Taneda [3] conducted experiments in a 
towing tank and investigated wakes behind the cylinder and plates photographically for the Reynolds number 
0.1 to 2000. Tritton [4] revealed qualitative and quantitative features of flow at low Reynolds numbers. 
Grove et al. [5] performed an experimental study on fundamental characteristics of the steady separated flow 
past a circular cylinder paying attention to the variation of these characteristics with increasing Reynolds 
numbers. A series of oil tunnel experiments were carried out by Acrivos et al. [6, 7] for steady separated 
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flows. Nishioka and Sato [8] determined velocity distribution across the standing eddies as well as in the 
wake of a cylinder at Reynolds numbers from 10 to 80. Coutanceau and Bouard [9] determined the main 
features of the hydrodynamic field for flow past a circular cylinder including the closed wake and the 
velocity distribution behind the obstacle for Reynolds numbers 5 to 40. 

The early numerical simulations past bluff bodies were carried out on steady flows employing the 
stream function-vorticity formulation and finite difference discretization technique. Early numerical 
investigations include that of Thom [10], Kawaguti [11] and Apelt [12] at Re =40 and 44 which indicated an 
approximate linear growth of the standing vortex pair with the Reynolds number. Kawaguti and Jain [13] 
obtained the solution of nunsteady    equation on a finite difference grid for Re =1 to 100. Takami and 

Keller [14] solved the    equations using the finite-difference discretization method and iterative 
solution technique. Results were provided for drag, bubble length, shape of standing vortex, the base 
pressure and some formula were suggested for large Reynolds numbers. Dennis and Chang [15] used the 
stream function-vorticity formulation and finite difference discretization to obtain a solution for a steady 
incompressible flow past a cylinder up to Re = 100. Fornberg [16, 17] carried out a numerical investigation 
of a steady viscous flow around a circular cylinder employing the stream function-vorticity formulation. 
Henderson [18] used the spectral element method to compute viscous drag, pressure drag and base pressure 
for flow around a circular cylinder. Chen [19] used a penalty finite-element formulation to analyze laminar 
separation of flow around a cylinder bounded by two parallel plates, and investigated the effect of three types 
of boundary conditions. Wu et al. [20] conducted a spectral-element analysis and towing tank experiments to 
study the separation angle of flow around a circular cylinder at low Reynolds numbers. Sen et al. [21] carried 
out an extensive analysis of flow past a circular cylinder at low Reynolds numbers by stabilized a finite-
element method, employing two types of boundary conditions, namely, the no slip condition and towing tank 
condition. Wei et al. [22] determined the characteristics of aerodynamic forces exerted on a twisted cylinder 
at a low Reynolds number of 100 using finite volume discretization technique. 

Another example of a classic bluff body problem is the external flow past a square cylinder which 
has an application in design of buildings. Okajima [23] and Okajima et al. [24] reported an extensive 
numerical and experimental study for an unconfined flow over a rectangular cross-section cylinder in the 
Reynolds number range of 100 to 2 × 104. The vortex shedding for a square cylinder confined in a channel 
was numerically studied by Mukhopadhyay et al. [25]. Sohankar et al. [26] performed calculations of an 
unsteady 2D flow around a square cylinder at various angle of incidence and Reynolds numbers range of 45–
200 using an incompressible SIMPLEC code with a non-staggered grid arrangement. Breuer et al. [27] 
computed a laminar flow past a square cylinder based on the lattice-Boltzmann and finite-volume method 
and showed that separation for a square cylinder commences at lower Reynolds numbers compared to 
circular cylinders. Gupta et al. [28] investigated the heat transfer and steady flow characteristics for a flow 
past a square cylinder by the finite difference method. Sen et al. [29] numerically computed a flow past 
square cylinders at low Reynolds numbers by the finite-element discretization technique and predicted the 
laminar separation Reynolds number for the first time to be 1.15. Mahir [30] analyzed a three-dimensional 
unsteady flow and heat transfer from an isothermal square cylinder subjected to cross-flow of air by using 
implicit fractional step solution method, third-order upwind discretization scheme for spatial derivatives and 
central-difference formula for viscous terms. 

In the present paper, a low Reynolds number viscous flow around both a circular and square cylinder 
is analyzed, and empirical relations for the bubble length, drag coefficients, and separation angle are 
proposed by using the Finite Volume discretization and SIMPLE solution method. Despite using a simplified 
pressure correction equation to facilitate the solution of linear systems, a satisfactory convergence rate is 
achieved by a proper choice of under-relaxation factors, and considering the wide variation in results found 
by researchers, the present treatment predicts separated flow past bluff bodies quite accurately with low 
computational cost. 
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2. Mathematical modeling of fluid flow problem 
 
2.1. Governing equations 
 

In the Cartesian co-ordinate system, the steady two-dimensional laminar flow around a cylinder for 
incompressible fluid is governed by the equations given by 
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where u  and v  are the velocity components in the x  and y  directions, respectively,    is the fluid density, 

 P  is the mean pressure and   is the laminar viscosity. 
 Equations (2.1), (2.2), (2.3) may be represented in the following generic form 
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 (2.4) 

 
where u  and v  are the velocity components,   is any generic dependent variable  ,u v ,   is the diffusion 

coefficient and R  is the source term. Note that for the continuity equation 1  , 0  , R 0   and so 
on. Considering the body fitted co-ordinate system, =  ,x y ,    ( , )x y  as shown in Fig.1(a and b) 

Eq.(2.4) can be transformed into the following form 
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are the contra variant velocity components. 
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 ,S    is the source term in ,   coordinates, J is the Jacobian of transformation and is given by 
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. (2.8) 

 
Now Eq.(2.5) is to be solved by satisfying the following boundary conditions given in Fig.2 in order 

to get the flow field around the cylinder.  
 

 
(a) Pysical domain                                    (b) Computational domain 

 
Fig.1. Coordinate system and O-type control volume. 

 

 
 

Fig.2. Problem definition and boundary conditions for circular cylinder. 

 
2.2. Boundary conditions 
 

The boundary conditions for a flow field around a cylinder fixed in a stream of uniform velocity U 
can be written as:   
(a) Inlet boundary: The components of the flow variables are provided as  
 
 ,  u U v 0    (2.9) 
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(b) Outlet boundary: The outlet boundary is located far from the region of interest and the Reynolds number 
is high, the gradient in the flow direction is taken to be zero. Thus  
 

 ,  
u v

0
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 


 
  (2.10) 

 
where / n   is the derivative parallel to the streamlines. 
(c) Solid boundary: The no slip boundary condition is applied on the surface of the body. 
 
       ,   u 0 v 0  .  (2.11) 
 
(d) Symmetry boundary: The flow variables on the symmetry plane are prescribed as 
 
 ,  ,  S P N Pu u u u v 0   .  (2.12) 

 
3. The finite volume method 
 
3.1. Discretization of governing equation in body fitted coordinates 
 
 The discretization is performed following a finite control volume approach in which the 
computational domain is divided into number contiguous quadrilateral cells. A collocated grid arrangement 
is used in which all the variables are stored at the geometric center of the cell. The locations of the various 
dependent variables and the associated cells for this grid configuration are shown in Fig.3 (a and b). Equation 
(2.5) is integrated over the volume of each cell in the computational domain as 
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(a) Physical plane                                   (b) Computational plane 

 
Fig.3. Collocated grid arrangement. 
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 Applying Gauss’s divergence theorem to convert volume integrals to surface integrals, Eq.(3.1), after 
little rearrangement, may be written as 
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 The cross derivative terms have been added to the source term which in turn has been linearized as 
suggested by Patanker [31]. Using the notation of Fig.3, the following approximations may be made for the 
derivatives at face e 
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 Analogous expressions may be derived for other faces. Using Eqs (2.6), (2.7), (2.8) and Eq.(3.3), 
Eq.(3.2) can be written as 
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 Central differencing is used to discretize the diffusion terms and a suitable interpolation for the 
convective terms is required to express cell face values in terms of nodal values. This is achieved as in 
Demirdzic et al. [32] by blending second-order central (CDS) differencing and first-order unconditionally 
stable upwind differencing scheme (UDS) in a deferred correction manner  
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where   is the blending factor having value between 0 to 1. The explicit part in Eq.(3.5) is obtained from 
previous iteration and added to the source term, like the cross derivative terms. Using the above scheme for 
convective terms and after little manipulation, Eq.(3.4) can be written in the following algebraic form 
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 Introducing an under-relaxation factor to slow down changes of a dependent variable in consecutive 
iterations, Eq.(3.6) becomes 
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 The term in brackets corresponds to the continuity equation. After outer iteration steps, the mass 
fluxes are corrected so that the bracketed term vanishes identically and, therefore, are not considered. 
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

    
, 

 
and the volume (area in 2D) of the cell V around the node P as indicated in Fig.3a is  
 

       e w n s n s e wV x x y y x x y y         = 

       ne sw nw se ne sw nw se
1

x x y y y y x x
2

        . 

 
m
P  denotes value of dependent variable from previous iteration and   is the under relaxation factor. 

 
4. Solution by SIMPLE algorithm 
 
 To obtain velocity and pressure fields, an iterative solution procedure akin to the SIMPLE method by 
Patankar and Spalding [33] is used. In the present work, the scalar and vector variables are stored in a 
collocated manner. Using Eq.(3.8), the momentum equations in the x  and y  directions may be written as 
 

       P
P nb nb u e w n s n s e w

u

a
u a u S p p y y p p y y

 
          

, (4.1) 

  

       P
P nb nb v e w n s n s e w

v

a
v a u S p p x x p p x x

 
          

. (4.2) 

 
 The pressure terms have been removed from the source terms in the above equations for 
convenience. Equations (4.1) and (4.2) may be written in the following matrix form. 
 
      u uA u S , (4.3) 
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      v vA v S  (4.4) 

 
where  u , v  denotes the field of the unknown nodal velocity field arranged in a vector form,  S  is a 

similar column vector containing source terms and  A  is the coefficient matrix. For the  thm 1  outer 

iteration, the matrix  uA  and column vector uS  are obtained using the tentative values of the parameters 

, ,m m mu v P . These parameters superscripted by m are either initial guesses or solution to the governing 

equations at the thm  outer iteration. Once matrix  uA  and column vector uS  are assembled, the system of 

equations represented by Eq.(4.3) is solved within the inner iteration loop by the strongly implicit procedure 

of Stone [34]. The velocity field *u , obtained in this manner satisfies the following equation 
 

      *
u uA u S . (4.5) 

 
 The asterisk is used to indicate that the computed velocity field satisfies momentum but not 

necessarily the continuity equation. Similarly *v  satisfies the following system 
 

      *
u vA v S . (4.6) 

 
 However, the success of the SIMPLE algorithm in the case of collocated arrangement of variables 
depends on the interpolation of nodal velocities to obtain face velocities and hence mass fluxes. To avoid 
false pressure field a special interpolation technique suggested by Rhie [35] is employed which leads to the 
following u  velocity at face e  
 

     
*

* m mnb nb P
e u u n s E Pe

P P ee

a u B 1
u y y P P

a a

    
       

    
 (4.7) 

 
where PB  is the source term excluding pressure gradient across the cell. The over bar denotes linear 

interpolation between two neighboring nodes which for an arbitrary quantity g  is given by 
 

   e eg f g 1 f g     (4.8) 

where  

  e

Pe
f

Pe eE
 


. 

 
 Similarly, velocities at other faces may be obtained in both x  and y  directions. The mass fluxes 
obtained from these face velocities are not guaranteed to satisfy the discrete continuity equation. That is 
 

  * * * * e w n sF F F F 0    , (4.9) 
 

  * * * * e w n s mF F F F S    . (4.10) 
 
 Consequently, the face velocities are corrected in the spirit of the SIMPLE algorithm as follows 
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  * '
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 
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' '
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  * '
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   
 
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' '
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p p 1
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  
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 
. (4.12) 

 

 Using Eqs (4.11) and (4.12) the mass flux at face e  is found to be 
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+ (4.13) 

    * *             e n s e n se e
u y y v x x      . 

 

 Neglecting the second term (cross-derivative contribution) of Eq.(4.13) based on the 
recommendation of Peric [36] we get 
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 (4.14) 

 

 Similarly, we can write for other faces 
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 (4.15) 
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 (4.16) 
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 (4.17) 
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 Substituting Eq.(4.14) to Eq.(4.17) in the discretized continuity Eq.(4.18) for an incompressible flow, 
the simplified pressure correction Eq.(4.19) without cross-derivative contributions is derived after algebraic 
manipulation. 
 
   e w n sF F F F 0    , (4.18) 
 

  ' ' ' ' '
P P W W E E N S S N ma p a p a p a p a p S      (4.19) 

where 
  P W E N Sa a a a a    , 
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 Pressure corrections are obtained by solving Eq.(4.19) by the ILU decomposition method of Stone 
[34]. These pressure corrections may be in turn used to correct mass fluxes, nodal velocities and pressure as 
follows 
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  'm 1 m
pp p p    . (4.22) 

 

 This marks the completion of the  thm 1  outer iteration and the obtained flow variables 

, ,pm 1 m 1 m 1u v    act as ‘initial guesses’ for the  thm 2  outer iteration and the whole process described 

above is repeated until the convergence criterion is met. 
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5. Convergence criteria  
 

Starting from the initial guess for all field values the process of solving the equations is repeated 
until convergence. Due to coupling of variables and the nonlinearity of the equations, it is not necessary to 
solve exactly the discretized equations for a given set of coefficients (inner iteration); these are only 
approximate and need to be updated. So, inner iterations of momentum equations are terminated by limiting 
the number of iteration to 1. Convergence of the pressure correction equation is monitored by comparing the 
sum of the absolute residuals after each sweep to its initial value. 

For outer iterations (solution with updated coefficients), the sum of the absolute values of the 
residuals over all control volumes is calculated and normalized by the inlet flux of the relevant quantity, 

inletf , that is 
 

K
l

l 1
inlet

R

R
f










. 

 

For convergence of outer iteration to take place the following must be satisfied 
 

 max , ,u v 1R R R   . 
 

The above criterion ensures that the relative changes in the variables from one iteration to the next 
are of the order of   or less.  

 
6. Results and discussion 
 
6.1. Flow past a circular cylinder 
 
 Viscous flow past a single cylinder with unit diameter and zero incidence is simulated at low Reynolds 
numbers (Re) with O-type grids of sizes 48 32 , 96 64 , and 192 128 . The computational domain details are 
shown in Fig.2, and Fig.4 shows the finest grid. The measurement of Taneda [3], Coutanceau and Bouard [9] and 
Homann [37] show that the flow separation on the cylinder surface commences at the Reynolds number ( )sRe  5 
to 7 depending on the blockage ratio B (ratio of the cylinder diameter and the domain width). It is evident from 
Fig.6a that the onset of separation is between Re = 6.5-6.6 for the present case with B = 0.016. The increase in 
length of the bubble with the Reynolds number can be observed from Fig.6b. Pressure coefficients are calculated 
for Reynolds numbers of 15, 30, 40, 100, as shown in Fig.7, which agree well with results from the literature. 
With the 192 128  grid, the surface pressure coefficients tend to show grid independency, and a further 
refinement of the grid is thus considered redundant. The influence of the Reynolds number on the surface pressure 
coefficient for the cylinder is illustrated in Fig.8 using the finest mesh. The separation angle, S  (defined in 
Fig.5), is computed for various Reynolds numbers and compared with Coutanceau and Bouard [9] and Takami 
and Keller [14]. The results agree well with Takami and Keller [14] at all Reynolds number but disagree slightly 
with Coutanceau and Bouard [9] at Re = 10 (see Fig.9). The correlation of the bubble length and Reynolds 
number is found to be positive and linear (Fig.10) as reported by earlier researchers. The bubble length in the 
present numerical computation is found to be slightly lower than in Taneda [3] and slightly higher than in 
Coutanceau and Bouard [9]. The variation of coefficients of viscous drag, pressure drag and total drag with the 
Reynolds number is illustrated in Fig.11. The discrepancy in drag coefficients is not very significant and the 
values are only slightly overestimated.  
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(a) 

 
[ 

Fig.6. (a) Onset of separation (b) Change of separation bubble with Reynolds number. 

Re = 6.5Re = 5 Re = 6.6

Re = 30 Re = 36

Re = 10

Re = 40

Re = 20Re = 15

E = Forward stagnation point 
 G = Rear stagnation point 
  F, H = Separation points 
  I = Wake stagnation point 

Fig.4. Overview of O-type grid used for a circular 

cylinder. 

Fig.5. Schematic representation of the separation 

bubble cross-section for circular cylinder. 
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Fig.7a. Pressure coefficients for circular cylinder at (a) Re = 15. 
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Fig.7b. Pressure coefficients for circular cylinder at (b) Re = 30. 
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Fig.7c. Pressure coefficients for circular cylinder at (c) Re = 40. 
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Fig.7d. Pressure coefficients for circular cylinder at (d) Re = 100. 
 

 
 

Fig.8. Effect of Reynolds number on pressure coefficient of a circular cylinder. 
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Fig.9. Variation of separation angle with Reynolds number for a circular cylinder. 
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Fig.10. Variation of non-dimensional bubble length with Reynolds number for a circular cylinder. 
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Fig.11. Variation of drag coefficient with Reynolds number for a circular cylinder. 

 
 In the present work, functional relations based on the least square fitting has been obtained to predict 
the variation of the bubble length, separation angle and drag coefficient with the Reynolds number using data 
in the range Re8 40   for a steady flow around a circular cylinder. The obtained relations are given below 
 
   / . . ReL r 0 687 0 115   ,         Re8 40  , (6.1) 
 

  . . . Re 0 5
S 78 16 158 02    ,      Re8 40  , (6.2) 

 

  . . . Re 0 5
DC 0 302 8 82   ,        Re8 40  . (6.3) 
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 For an unbounded flow Sen et al. [21] and Sobey [38] found the following expression for the bubble 
length 
 
   / . . ReL r 0 847 0 1336   ,      Re Res 40  , (6.4) 
 
   / . . ReL r 0 506 0 115   . (6.5) 
 
 Sen et al. [21], and Wu et al. [20] proposed the following equation for S  
 

  .. . Re 0 5
S 77 66 152 65    ,      Re10 40  , (6.6) 

 

  .. . Re 0 5
S 78 5 155 2    ,         Re10 200  . (6.7) 

 
  Smith [39] and Sen et al. [21] proposed ReDC   variation for a steady flow as follows 
 

  .. . Re 0 5
DC 0 5 3 805   , (6.8) 

 

  .. . Re 0 5
DC 0 26 7 89   ,         Re15 40  . (6.9) 

 
 By comparing with other empirical equations from the literature, very little discrepancy is found in 

the case of bubble length and separation angle. Although DC  is found to vary as .Re 0 5 , the present 

ReDC   relation shows some discrepancy, and agreement with Sen et al. [21] is better than with Smith [39].  
 The equations obtained for the bubble length, separation angle, drag coefficient are linearly 
extrapolated to check their validity at the Reynolds number up to 100. The extrapolated bubble length and 
separation angle agree quite well with data from the literature as shown in Fig.12 and Fig.13. The 
extrapolated drag coefficients agree well with Tritton [4] but the agreement with Henderson [18] and Sen 
[21] is less satisfactory, particularly at lower Reynolds numbers (see Fig.14). 
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Fig.12. Extrapolated bubble length for circular cylinder. 
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Fig.13. Extrapolated separation angle for circular cylinder. 
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Fig.14. Extrapolated drag coefficients for circular cylinder. 

 
6.2. Flow past a square cylinder 
 
 Viscous flow past a single square cylinder with unit length and zero incidence is simulated at low 
Reynolds numbers (Re) with O-type grids of sizes 84 22 ,168 44 , 300 88 , and 338 88 . The 
computational domain details are shown in Fig.15 and the finest gird is shown in Fig.16. To establish 
adequacy of the mesh, computations of the bubble length and drag coefficients were carried out at 4 different 
meshes at Re = 5 and 40. As illustrated by Tab.1, the mesh size of 338 88  yields grid independent 
solutions, and hence this grid was used to perform further computations for the square cylinder.  
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Fig.15. Problem definition and boundary conditions for square cylinder. 

 

Table 1. Mesh convergence for square cylinder. 
 

  L/D CD 

Mesh No. of Cells 5 40 5 40 
  0.280 2.000 4.840 1.993 

168×44 7392 0.297 2.450 4.742 1.860 
300×88 26400 0.299 2.673 4.680 1.786 
336×88 29568 0.300 2.680 4.678 1.783 

 
 It is evident from Fig.18 and Fig.19 that the agreement between computed pressure drag coefficients 
and these of Sen et al. [29] is excellent. The total and viscous drag also shows satisfactory agreement and is 
only slightly overestimated. The bubble length varies linearly with the Reynolds number and shows an 
excellent agreement with Paliwal et al. [40] at all Reynolds numbers. The bubble length obtained by the 

 E = Forward stagnation point 
 G = Rear stagnation point 
  F, H = Separation points 
  I = Wake stagnation point 
 

Fig.16. Overview of O-type grid used for a 

square cylinder. 

Fig.17. Schematic representation of the 

separation bubble cross-section for square 
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present numerical treatment and that by Sen et al. [29] shows 2.4%-6.6% discrepancy at Reynolds numbers 
greater than 32, but agrees very well at lower Reynolds numbers (see Fig.20). The separation angle for the 
square cylinder (as defined in Fig.17), is plotted against the Reynolds number in Fig.21. It can be seen from 
Fig.21 that both the present work and Sen et al. [29] predicts the separation angle to reach a limiting value of 
135 deg as Reynolds number is increased. A comparison between Fig.11 and Fig.19, and Fig.12 and Fig.20 
reveals that, the bubble length L, and drag coefficient CD is larger for a cylinder with a square shape 
compared to that with a circular shape at a given Reynolds number. 
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Fig.18. Pressure and viscous drag coefficients vs. Reynolds number for square cylinder. 
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Fig.19. Total Drag coefficient vs. Reynolds number for square cylinder. 
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Fig.20. Non-dimensional bubble length vs. Reynolds number for square cylinder. 
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Fig.21. Separation angle vs. Reynolds number for square cylinder. 
 

 
 

Fig.22. Convergence history. 
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 Based on the computation between up to 40, empirical relations for of non-dimensional bubble 
length and drag coefficients are proposed using least square curve fitting. The relation between L/D, CD and 
Re are given below 
 

  . . Re
L

0 047 0 069
D
   ,                Re5 40  , (6.10) 

 

  .. . Re 0 666
DC 0 772 11 56   ,       Re2 40  . (6.11) 

 
 The above relations show satisfactory agreement with that of Sen et al. [29] who proposed the 
following relationships 
 

  . . Re
L

0 0783 0 0724
D
   ,                Re5 40  , (6.12) 

  

  . . . Re 0 66
DC 0 7496 10 5767   ,       Re2 40  . (6.13) 

 
 In the present numerical methodology, a simplified pressure correction equation was utilized to save 
computational cost and facilitate the use of the incomplete LU decomposition of Stone [34]. Despite doing 
so, a satisfactory convergence rate was found by using under -relaxation factors of .u v 0 8    , .p 0 2   

for the circular cylinder, and .u v 0 65    , .p 0 15   for the square cylinder. Figure 22 illustrates that 

despite the simplified pressure correction equation and non-orthogonal grid, the residuals of the continuity 
equation reduces by a factor of 100 within 60 iterations for circular cylinder and 150 iterations for square 
cylinder. 
 
7. Conclusions 
 
 A finite volume discretization method and SIMPLE solution technique with simplified pressure 
correction equation are used to predict a two-dimensional steady flow past a circular cylinder at blockage of 
0.016 and square cylinder at blockage of 0.0625 up to the Reynolds number of 40. Despite neglecting cross-
derivative terms in the pressure correction equation, a satisfactory convergence rate is found by using under-
relaxation factors of .u v 0 8    , .p 0 2   for the circular cylinder and .u v 0 65    , .p 0 15   for 

the square cylinder. 
 For the circular cylinder, the onset of flow separation occurs between Reynolds numbers of 6.5-6.6, 
and the bubble length, drag coefficient, and separation angle obey the following relationships 
 
   / . . ReL r 0 687 0 115   ,        Re8 40  , (7.1) 
 

  . . . Re 0 5
S 78 16 158 02    ,     Re8 40  , (7.2) 

 

  . . . Re 0 5
DC 0 302 8 82   ,        Re8 40  . (7.3) 

 
 The square cylinder has a larger separation bubble and drag coefficients at a given Reynolds number 
than the circular cylinder, and separation also occurs at lower Reynolds numbers. The separation angle for 
the square cylinder decreases with an increase in the Reynolds number and tends to a value of 135 deg for 
Re 10 .Moreover, the bubble length and drag coefficient of the square cylinder exposed to a steady viscous 
flow follows the relationships given below 
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  . . Re
L

0 047 0 069
D
   ,             Re5 40  , (7.4) 

 

  .. . Re 0 666
DC 0 772 11 56   ,     Re2 40  . (7.5) 

 

 By comparing equations given above it can be further concluded that at a given Reynolds number the 
separation bubble length and drag coefficient are greater in case of a square cylinder compared to a circular 
one. This implies that a cylinder with a square section is more bluff than the one with a circular section. 
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Nomenclature 
 
 , , , ,P E W N Sa a a a a  − coefficients in the algebraic transport equation 

 DC  − drag coefficient 

 PC  − pressure coefficient 

 , , , e w n sD D D D  − diffusion coefficients 

 F − mass flux 
 ef

  − linear interpolation factor 

 G − production of turbulent kinetic energy 
 J  − Jacobian of transformation 
 L/D, L/r − non-dimensional bubble length 
 , , , e w n sN N N N  − cross diffusion coefficients  

 n − direction normal to a boundary 

 n  − dimensionless normal distance in the law of the wall 
 P − pressure 

 R  − source term in Eq.(2.4) 
 R  − normalized residual for   

 Re − Reynolds number 
 S  − source term in Eq.(2.5) 

 mS  − source term in the pressure correction equation 

 U  − contravariant velocity component 
 u  − x  component of velocity 
 u  − shear velocity 

 V  − contravariant velocity component 
 V  − cell volume 
 v  − y  component of velocity 
 x  − Cartesian coordinate direction 
 y  − Cartesian coordinate direction 
 , ,    − transformation parameters 
   − generic diffusion coefficient in Eq.(2.4) 
   − body-fitted coordinate direction 

 S − separation angle 
 λ  − blending factor for convective scheme 
   − dynamic viscosity  
   − body-fitted coordinate direction 
   − density 
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 w  − wall shear stress 

   − generic transport variable 
   − convergence criteria for outer iteration 
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