PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the mechanics and modeling of interfaces between granular soils and structural materials

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The behavior of interfaces between granular soils and structural construction materials has an important impact on the monotonic and cyclic response of many soil–structure interaction (SSI) systems. Understanding the mechanics and modeling of these interfaces is an important step towards a safe and effective design and analysis of SSI problems. An extensive literature search for a ‘one-stop shop’ providing a comprehensive exposition on the mechanical characteristics and numerical modeling approaches of granular soil–structure interfaces yielded less than encouraging results. This paper seeks to bridge this knowledge gap in as concise manner as possible. To this end, the effects of the essential elements of the SSI problem, including soil and structural features as well as loading conditions, on the deformation and stress transformation mechanism of the interface are critically examined. Simple and advanced interface constitutive modeling methods are discussed, and implementation techniques of interface elements in finite element codes are explained. Additionally, a method to incorporate the effect of particle breakage to improve the capabilities of an elasto-plastic constitutive simulation of the cyclic accumulative contraction in granular interface modeling is introduced.
Rocznik
Strony
1562--1579
Opis fizyczny
Bibliogr. 90 poz., rys., wykr.
Twórcy
autor
  • Department of Civil and Water Engineering, 1065, avenue de la Médecine, Pavillon Adrien-Pouliot, Université Laval, Québec (Québec) G1V 0A6, Canada
autor
  • Department of Civil and Water Engineering, 1065, avenue de la Médecine, Pavillon Adrien-Pouliot, Université Laval, Québec (Québec) G1V 0A6, Canada
autor
  • Department of Civil and Water Engineering, 1065, avenue de la Médecine, Pavillon Adrien-Pouliot, Université Laval, Québec (Québec) G1V 0A6, Canada
Bibliografia
  • [1] M. Uesugi, H. Kishida, Frictional resistance at yield between dry sand and mild steel, Soils Found. 26 (1986) 139–149.
  • [2] L. Hu, J. Pu, Testing and modeling of soil–structure interface, J. Geotech. Geoenviron. Eng. 130 (2004) 851–860. , http://dx.doi.org/10.1061/(ASCE)1090-0241(2004)130:8(851).
  • [3] J.T. Dejong, D.J. White, M.F. Randolph, Microscale observation and modeling of soil–structure interface behavior Rusing particle image velocimetry, Soils Found. 46 (2006) 15–28. , http://dx.doi.org/10.3208/sandf.46.15.
  • [4] J.T. DeJong, Z.J. Westgate, Role of initial state, material properties, and confinement condition on local and globar soil–structure interface behavior, J. Geotech. Geoenvironmental Eng. 135 (2009) 1646–1660. , http://dx.doi. org/10.1061/(ASCE)1090-0241(2009)135:11(1646).
  • [5] A. Martinez, J.D. Frost, G.L. Hebeler, Experimental study of shear zones formed at sand/steel interfaces in axial and torsional axisymmetric tests, Geotech. Test. J. 38 (2015) 409–426. , http://dx.doi.org/10.1520/GTJ20140266.
  • [6] J. Frost, J. DeJong, M. Recalde, Shear failure behavior of granular–continuum interfaces, Eng. Fract. Mech. 69 (2002) 2029–2048. , http://dx.doi.org/10.1016/S0013-7944(02)00075-9.
  • [7] A. Martinez, J.D. Frost, Particle-scale effects on global axial and torsional interface shear behavior, Int. J. Numer. Anal. Methods Geomech. 41 (2017) 400–421. , http://dx.doi.org/10.1002/nag.2564.
  • [8] G. Zhang, D. Liang, J.-M. Zhang, Image analysis measurement of soil particle movement during a soil–structure interface test, Comput. Geotech. 33 (2006) 248–259. , http://dx.doi.org/10.1016/j.compgeo.2006.05.003.
  • [9] J.T. DeJong, M.F. Randolph, D.J. White, Interface load transfer degradation during cyclic loading: a microscale investigation, Soils Found. 43 (2003) 81–93. , http://dx.doi.org/10.3208/sandf.43.4_81.
  • [10] J.G. Potyondy, Skin friction between various soils and construction materials, Géotechnique 11 (1961) 339–353. , http://dx.doi.org/10.1680/geot.1961.11.4.339.
  • [11] C.S. Desai, E.C. Drumm, M.M. Zaman, Cyclic testing and modeling of interfaces, J. Geotech. Eng. 111 (1985) 793–815.
  • [12] I. Shahrour, F. Rezaie, An elastoplastic constitutive relation for the soil–structure interface under cyclic loading, Comput. Geotech. 21 (1997) 21–39. , http://dx.doi.org/10.1016/S0266-352X(97)00001-3.
  • [13] M. Zeghal, T.B. Edil, Soil structure interaction analysis: modeling the interface, Can. Geotech. J. 39 (2002) 620–628. , http://dx.doi.org/10.1139/t02-016.
  • [14] G. Mortara, A. Mangiola, V.N. Ghionna, Cyclic shear stress degradation and post-cyclic behaviour from sand–steel interface direct shear tests, Can. Geotech. J. 44 (2007) 739–752. , http://dx.doi.org/10.1139/t07-019.
  • [15] A. Di Donna, A. Ferrari, L. Laloui, Experimental investigations of the soil–concrete interface: physical mechanisms, cyclic mobilization, and behaviour at different temperatures, Can. Geotech. J. 53 (2016) 1–14. , http://dx.doi.org/10.1139/cgj-2015-0294.
  • [16] M. Uesugi, H. Kishida, Influential factors of friction between steel and dry sands, Soils Found 26 (1986) 33–46, http://ci.nii.ac.jp/naid/110003985129/en/ (accessed 15.10.15).
  • [17] M. Uesugi, H. Kishida, Y. Tsubakihara, Friction between sand and steel under repeated loading, Soils Found 29 (1989) 127–137. , http://dx.doi.org/10.3208/sandf.47.887.
  • [18] M. Uesugi, H. Kishida, Y. Uchikawa, Friction between dry sand and concrete under monotonic and repeated loading, Soils Found. 30 (1990) 115–128. , http://dx.doi.org/10.3208/sandf1972.30.115.
  • [19] K. Fakharian, Three-dimensional monotonic and cyclic behaviour of sand–steel interfaces: testing and modelling, University of Ottawa, Ontario, Canada, 1996, Ph.D. thesis, http://www.ruor.uottawa.ca/handle/10393/10238 (accessed 15.10.15).
  • [20] E. Evgin, K. Fakharian, Effect of stress paths on the behaviour of sand–steel interfaces, Can. Geotech. J. 33 (1996) 853–865. , http://dx.doi.org/10.1139/t96-116-336.
  • [21] K. Fakharian, E. Evgin, Cyclic simple-shear behavior of sand–steel interfaces under constant normal stiffness condition, J. Geotech. Geoenviron. Eng. 123 (1997) 1096–1105.
  • [22] Y. Yoshimi, T. Kishida, A ring torsion apparatus for evaluating friction between soil and metal surfaces, Geotech. Test. J. 4 (1981) 145–152. , http://dx.doi.org/10.1520/GTJ10783J.
  • [23] N. Yasufuku, H. Ochiai, Sand–steel interface friction related to soil crushability,ASCE, Reston, VA, Proceeding, Geomech. Testing, Model. Simul. (2005) 627–641, http://www.researchgate.net/publication/268590849_Sand-Steel_Interface_Friction_Related_to_Soil_Crushability.
  • [24] C.S. Desai, S.K. Pradhan, D. Cohen, Cyclic testing and constitutive modeling of saturated sand–concrete interfaces using the disturbed state concept, Int. J. Geomech. 5 (2005) 286–294. , http://dx.doi.org/10.1061/(ASCE)1532-3641(2005)5:4 (286).
  • [25] G. Koval, F. Chevoir, J.N. Roux, J. Sulem, A. Corfdir, Interface roughness effect on slow cyclic annular shear of granular materials, Granul. Matter. 13 (2011) 525–540. , http://dx.doi.org/10.1007/s10035-011-0267-2.
  • [26] W. Brumund, G. Leonards, Experimental study of static and dynamic friction between sand and typical construction materials, J. Test. Eval. 1 (1973) 162–165. , http://dx.doi.org/10.1520/JTE10893J.
  • [27] E. Wernick, Skin friction of cylindrical anchors in noncohesive soils,University of New South Wales, Sydney, Australia, Symp. Soil Reinf. Stabilising Tech. Eng. Pract. (1978) 201–219.
  • [28] G. Zhang, J.-M. Zhang, Monotonic and cyclic tests of interface between structure and gravelly soil, Soils Found. 46 (2006) 505–518, http://ci.nii.ac.jp/naid/110004781718/en/ (accessed 15.10.15).
  • [29] G. Zhang, J.-M. Zhang, Constitutive rules of cyclic behavior of interface between structure and gravelly soil, Mech. Mater. 41 (2009) 48–59. , http://dx.doi.org/10.1016/j.mechmat.2008.08.003.
  • [30] G. Zhang, L. Wang, J.-M. Zhang, Dilatancy of the interface between a structure and gravelly soil, Géotechnique. 61 (2011) 75–84.
  • [31] M. Uesugi, H. Kishida, Y. Tsubakihara, Behavior of sand particles in sand–steel friction, Soils Found. 28 (1988) 107–118. , http://dx.doi.org/10.3208/sandf1972.28.107.
  • [32] W.J. Hou, Research on monotonic and cyclic behavior and constitutive model of three-dimensional soil–structure interface, Ph.D. thesis, Tsinghua University, Beijing, China, 2008.
  • [33] V. Fioravante, On the shaft friction modeling of nondisplacement piles in sand, Soils Found. 42 (2002) 23–33. , http://dx.doi.org/10.1248/cpb.37.3229.
  • [34] L. Balachowski, Scale effect in shaft friction from the direct shear interface tests, Arch. Civ. Mech. Eng. 6 (2006) 13–28. , http://dx.doi.org/10.1016/S1644-9665(12)60238-6.
  • [35] M. Boulon, Basic features of soil structure interface behaviour, Comput. Geotech. 7 (1989) 115–131. , http://dx.doi.org/10.1016/0266-352X(89)90010-4.
  • [36] S.C. D'Aguiar, A. Modaressi-Farahmand-Razavi, J.A. dos Santos, F. Lopez-Caballero, Elastoplastic constitutive modelling of soil–structure interfaces under monotonic and cyclic loading, Comput. Geotech. 38 (2011) 430–447. , http://dx.doi.org/10.1016/j.compgeo.2011.02.006.
  • [37] L. Balachowski, P. Foray, G. Rault, Scale effect in shaft friction due to the localisation of deformations, in: Int. Conf. Centrifuge, Tokyo, 1998, pp. 211–216 https://www.researchgate.net/publication/282287269_Scale_effect_in_shaft_friction_due_to_the_localisation_of_deformations (accessed 5.03.18).
  • [38] B.M. Lehane, C. Gaudin, J.a. Schneider, Scale effects on tension capacity for rough piles buried in dense sand, Géotechnique 55 (2005) 709–719. , http://dx.doi.org/10.1680/geot.2005.55.10.709.
  • [39] M. Boulon, P. Foray, Physical and numerical simulation of lateral shaft friction along offshore piles in sand,Paris, Fr., 3rd Int. Conf. Numer. Methods Offshore Piling (1986) 127–148.
  • [40] G. Mortara, M. Boulon, V.N. Ghionna, A 2-D constitutive model for cyclic interface behaviour, Int. J. Numer. Anal. Methods Geomech. 26 (2002) 1071–1096. , http://dx.doi.org/10.1002/nag.236.
  • [41] P.V. Lade, L.B. Ibsen, A Study of the Phase Transformation and the Characteristic Lines of Sand Behaviour, Geotechnical Engineering Group, 1997 http://vbn.aau.dk/en/publications/astudy-of-the-phase-transformation-and-the-characteristiclines-of-sand-behaviour(99464347-f994-4ceb-985b-7412d5697371).html (accessed 15.10.15).
  • [42] T.R. Thomas, Rough Surfaces, Imperial College Press, 1999.
  • [43] B. Farhadi, A. Lashkari, Influence of soil inherent anisotropy on behavior of crushed sand–steel interfaces, Soils Found. 57 (2017) 111–125. , http://dx.doi.org/10.1016/j.sandf.2017.01.008.
  • [44] G. Mortara, D. Ferrara, G. Fotia, Simple model for the cyclic behavior of smooth sand–steel interfaces, J. Geotech. Geoenviron. Eng. 136 (2010) 1004–1009. , http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000315.
  • [45] J.D. Frost, G.L. Hebeler, T.M. Evans, J.T. DeJong, Interface Behavior of Granular Soils,ASCE, Proceeding, Eng. Constr. Oper. Challenging Environ. (2004) 65–72, http://ascelibrary.org/doi/abs/10.1061/40722(153)10 (accessed 9.11.15).
  • [46] G. Zhang, J.-M. Zhang, Large-scale monotonic and cyclic tests of interface between geotextile and gravelly soil, Soils Found. 49 (2009) 75–84. , http://dx.doi.org/10.3208/sandf.49.75.
  • [47] P.V. Lade, J.a. Yamamuro, P.a. Bopp, Significance of particle crushing in granular materials, J. Geotech. Geoenviron. Eng. 122 (1996) 309–316. , http://dx.doi.org/10.1061/(ASCE)1090-0241(1997)123:9(889).
  • [48] R.P. Jensen, M.E. Plesha, T.B. Edil, P.J. Bosscher, N. Ben Kahla, DEM simulation of particle damage in granular media–structure interfaces, Int. J. Geomech. 1 (2001) 21–39. , http://dx.doi.org/10.1061/(ASCE)1532-3641(2001)1:1(21).
  • [49] A. Daouadji, P.-Y. Hicher, An enhanced constitutive model for crushable granular materials, Int. J. Numer. Anal. Methods Geomech. 34 (2010) 555–580, http://doi.wiley.com/10.1002/nag.815.
  • [50] A. Daouadji, P.-Y. Hicher, A. Rahma, An elastoplastic model for granular materials taking into account grain breakage, Eur. J. Mech. A/Solids 20 (2001) 113–137.
  • [51] R.J. Marsal, Large-scale testing of rockfill materials, J. Soil Mech. Found. Div 93 (1967) 27–43, http://cedb.asce.org/cgi/WWWdisplay.cgi?14902 (accessed 15.10.15).
  • [52] K.L. Lee, I. Farhoomand, Compressibility and crushing of granular soil in anisotropic triaxial compression, Can. Geotech. J. 4 (1967) 68–86. , http://dx.doi.org/10.1139/t67-012.
  • [53] B.O. Hardin, Crushing of soil particles, J. Geotech. Eng. 111 (1985) 1177–1192. , http://dx.doi.org/10.1061/(ASCE)0733-9410 (1985)111:10(1177).
  • [54] M. Saberi, C.-D. Annan, J.-M. Konrad, Constitutive modeling of gravelly soil–structure interface considering particie breakage, J. Eng. Mech. 143 (2017), 04017044 (14 pp.).
  • [55] M.H. Aliabadi, C.A. Brebbia, Computational methods In contact mechanics, Comput. Methods Contact Mech. Comput. Mech. Publ. Appl. Sci. 93 (1993) 361.
  • [56] Dassault Systèmes, Abaqus Documentation, 2013.
  • [57] A. Inc, ANSYS Mechanical User's Guide, 2013.
  • [58] R.E. Goodman, R.L. Taylor, T.L. Brekke, A model for the mechanics of jointed rock, J. Soil Mech. Found. Div 94 (1968) 637–660, http://cedb.asce.org/cgi/WWWdisplay.cgi?15487(accessed 15.10.15).
  • [59] O.C. Zienkiewicz, B. Best, C. Dullage, K.G. Stagg, Analysis of Nonlinear Problems in Rock Mechanics with Particular Reference to Jointed Rock Systems, in: 2nd Int. Soc. Rock Mech. Proc., Belgrad, 1970, pp. 501–509 http://trid.trb.org/view.aspx?id=127770 (accessed 15.10.15).
  • [60] C.S. Desai, J.G. Lightner, h.J. Siriwardane, Thin-layer element for interfaces and joints, Int. J. Numer. Anal. Methods Geomech. 8 (1984) 19–43.
  • [61] G.W. Clough, J.M. Duncan, Finite element analyses of retaining wall behavior, J. Soil Mech. Found. Div 97 (1971) 1657–1673, http://cedb.asce.org/cgi/WWWdisplay.cgi?18440 (accessed 15.10.15).
  • [62] L. Hu, J.L. Pu, Application of damage model for soil–structure interface, Comput. Geotech. 30 (2003) 165–183. , http://dx.doi.org/10.1016/S0266-352X(02)00059-9.
  • [63] B. Xu, D. Zou, H. Liu, Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model, Comput. Geotech. 43 (2012) 143–154. , http://dx.doi.org/10.1016/j.compgeo.2012.03.002.
  • [64] K.G. Sharma, C.S. Desai, Analysis and implementation of thin-layer element for interfaces and joints, J. Eng. Mech. 118 (1992) 2442–2462. , http://dx.doi.org/10.1061/(ASCE)0733-9399 (1992)118:12(2442).
  • [65] M.J.K. Essa Al-Younis, Effect of Soil–Structure Interaction on the Behavior of Offshore Piles Embedded in Nonlinear Porous Media, The University of Arizona, 2013.
  • [66] M. Saberi, C.-D. Annan, J.-M. Konrad, Numerical analysis of concrete faced rockfill dams considering the effect of face slab-cushion layer interaction, Can. Geotech. J. (2018), http://dx.doi.org/10.1139/cgj-2017-0609.
  • [67] W.F. Chen, G.Y. Baladi, Soil Plasticity: Theory and Implementation, Elsevier, 1985 https://books.google.ca/books/about/Soil_Plasticity.html?id=aNowAyaEfTEC&pgis=1 (accessed 31.12.15).
  • [68] Y.F. Dafalias, Bounding surface plasticity. I: Mathematical foundation and hypoplasticity, J. Eng. Mech 112 (1986) 966–987, http://cedb.asce.org/cgi/WWWdisplay.cgi?49542 (accessed 15.10.15).
  • [69] C.S. Desai, B.K. Nagaraj, Modeling for cyclic normal and shear behavior of interfaces, J. Eng. Mech. 114 (1988) 1198–1217. , http://dx.doi.org/10.1061/(ASCE)0733-9399(1988)114:7 (1198).
  • [70] J.R.T. Brandt, Behavior of soil–concrete interfaces, Ph.D. thesis, University of Alberta, Alberta, Canada, 1985.
  • [71] J. Ghaboussi, E.L. Wilson, J. Isenberg, Finite element for rock joints and interfaces, J. Soil Mech. Found. Div 99 (1973) 849–862, http://cedb.asce.org/cgi/WWWdisplay.cgi?20215 (accessed 15.10.15).
  • [72] V.D. Gennaro, R. Frank, Elasto-plastic analysis of the interface behaviour between granular media and structure, Comput. Geotech. 29 (2002) 547–572. , http://dx.doi.org/10.1016/S0266-352X(02)00010-1.
  • [73] V.N. Ghionna, G. Mortara, An elastoplastic model for Sand-structure interface behaviour, Géotechnique. 52 (2002) 41–50. , http://dx.doi.org/10.1680/geot.52.1.41.40826.
  • [74] G. Zhang, J.-M. Zhang, Unified modeling of monotonic and cyclic behavior of interface between structure and gravelly soil, Soils Found. 48 (2008) 231–245. , http://dx.doi.org/10.3208/sandf.48.231.
  • [75] C.S. Desai, Y. Ma, Modelling of joints and interfaces using the disturbed-state concept, Int. J. Numer. Anal. Methods Geomech. 16 (1992) 623–653.
  • [76] H. Liu, E. Song, H.I. Ling, Constitutive modeling of soil–structure interface through the concept of critical state soil mechanics, Mech. Res. Commun. 33 (2006) 515–531. , http://dx.doi.org/10.1016/j.mechrescom.2006.01.002.
  • [77] J. Liu, D. Zou, X. Kong, A three-dimensional state-dependent model of soil–structure interface for monotonic and cyclic loadings, Comput. Geotech. 61 (2014) 166–177. , http://dx.doi.org/10.1016/j.compgeo.2014.05.012.
  • [78] H. Liu, H.I. Ling, Constitutive description of interface behavior including cyclic loading and particle breakage within the framework of critical state soil mechanics, Int. J. Numer. Anal. Methods Geomech. 32 (2008) 1495–1514. , http://dx.doi.org/10.1002/nag.682.
  • [79] A. Lashkari, Prediction of the shaft resistance of nondisplacement piles in sand, Int. J. Numer. Anal. Methods Geomech. 37 (2013) 904–931. , http://dx.doi.org/10.1002/nag.
  • [80] A. Lashkari, M. Kadivar, A constitutive model for unsaturated soil–structure interfaces, Int. J. Numer. Anal.Methods Geomech. 40 (2016) 207–234. , http://dx.doi.org/10.1002/nag.2392.
  • [81] M. Saberi, C.-D. Annan, J.-M. Konrad, A. Lashkari, A critical state two-surface plasticity model for gravelly soil–structure interfaces under monotonic and cyclic loading, Comput. Geotech. 80 (2016) 71–82. , http://dx.doi.org/10.1016/j.compgeo.2016.06.011.
  • [82] M. Saberi, C.-D. Annan, J.-M. Konrad, A unified constitutive model for simulating stress-path dependency of sandy and gravelly soil–structure interfaces, Int. J. Non. Linear. Mech. (2018).
  • [83] H. Stutz, D. Mašín, Hypoplastic interface models for finegrained soils, Int. J. Numer. Anal. Methods Geomech. (2016), http://dx.doi.org/10.1002/nag.2561.
  • [84] K. Been, M.G. Jefferies, A state parameter for sands, Géotechnique. 35 (1985) 99–112. , http://dx.doi.org/10.1680/geot.1985.35.2.99.
  • [85] M.R. Coop, I.K. Lee, The behaviour of granular soils at elevated stresses,St Catherine's Coll. Oxford, Predict. Soil Mech. Proc. Wroth Meml. Symp. 27–29 July 1992 1993, http://trid.trb.org/view.aspx?id=384369 (accessed 15.10.2015).
  • [86] J.-M. Konrad, Sand state from cone penetrometer tests: a framework considering grain crushing stress, Geochnique. 48 (1998) 201–215.
  • [87] M. Ghafghazi, D.A. Shuttle, J.T. DeJong, Particle breakage and the critical state of sand, Soils Found. 54 (2014) 451–461. , http://dx.doi.org/10.1016/j.sandf.2014.04.016.
  • [88] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Geochnique. 29 (1979) 47–65.
  • [89] R.P. Jensen, P.J. Bosscher, M.E. Plesha, T.B. Edil, DEM simulation of granular media–structure interface: Effects of surface roughness and particle shape, Int. J. Numer. Anal. Methods Geomech. 23 (1999) 531–547, doi:10.1002/(SICI)1096-9853(199905)23:6<531::AID-NAG980>3.0.CO;2-V.
  • [90] J. Wang, M.S. Gutierrez, J.E. Dove, Numerical studies of shear banding in interface shear tests using a new strain calculation method, Int. J. Numer. Anal. Methods Geomech. 31 (2007) 1349–1366. , http://dx.doi.org/10.1002/nag.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8045b26-de4d-477b-be4d-05db4477f109
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.