PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The ambiguity of frequency determination in digital microwave frequency discriminators

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Instantaneous frequency measurement devices are designated for very fast measurements of the current frequency value of microwave signals, even if they are very short in the time domain. Fast measurements of frequency temporary values may be based on the evaluation of the phase difference of signal propagating through the microwave transmission lines with unequal, but known, lengths. This paper presents the principle of determination of temporary values of the microwave signal frequency using the digitalized signals and the binary value of them eventually. In the purpose of increase the frequency discrimination resolution, additional tracks with lines with a larger length are proposed. For the system with elements with analytical model transmission characteristics it is typical that bands of ambiguity of frequency measurement occurs. To tackle this problem in addition to 4 x 4 Butler matrix implementation the method of using combination sine and cosine signals is proposed.
Twórcy
  • Polish Air Force University, Faculty of Aviation, Dęblin, Poland
  • Military University of Technology, Faculty of Electronics, Institute of Radioelectronics, Warsaw, Poland
Bibliografia
  • [1] Stec B. (1980). Broadband homodyne system for measuring microwave circuits. Proceedings of the MESC, Gdańsk (in Polish).
  • [2] Stec B. (1985). Microwave phase discriminator. Bulletin Military University of Technology vol. 392, Warszawa, (in Polish).
  • [3] Smólski B. (1980). Analysis and synthesis of instantaneous frequency measurement systems. The Supplement to the Bulletin of Military University of Technology No. 8, Warszawa (in Polish).
  • [4] Rutkowski A., Stec B. (1998). A Planar Microwave Frequency Discriminator. Proceedings of the 12th International Conference on Microwaves and Radar, MIKON-98, (IEEE Cat. No.98EX195), Kraków. https://doi.org/10.1109/MIKON.1998.740805.
  • [5] East P.W. (2012). Fifty years of instantaneous frequency measurement. IET Radar, Sonar & Navigation Vol. 6, Issue 2, 2012, pp. 112-122. https://doi.org/10.1049/iet-rsn.2011.0177.
  • [6] Rutkowski A. (1990). Analysis of microwave phase and frequency discriminators with analog and digital processing of output voltages. [Doctoral dissertation, Military University of Technology, Warszawa] (in Polish).
  • [7] Stec B., Rećko C. (2006). Ambiguity in determining the frequency of the ring frequency discriminator. Bulletin Military University of Technology, No. 1, Warszawa (in Polish).
  • [8] Wincza K., Gruszczyński S. (2012). Miniaturized Broadband 4 x 4 Butler Matrix Designed with the Use of Quasi-Lumped Coupled-Line Couplers. 8th International Caribbean Conference on Devices, Circuits and Systems (ICCDCS). Playa del Carmen, Mexico. https://doi.org/10.1109/MRRS.2011.6053615.
  • [9] Wincza K., Gruszczyński S., Sachse K. (2011). Ultrabroadband 4 x 4 Butler Matrix with the Use of Multisection Coupled-line Directional Couplers and Phase Shifters. Microwaves, Radar And Remote Sensing Symposium. Kiev, Ukraine. https://doi.org/10.1109/MRRS.2011.6053615.
  • [10] Stadnik H., Stec B. (2020). Microwave frequency detector using a 4x4 Butler matrix. SPIE Proceedings Volume 11442, USA. https://doi.org/10.1117/12.2565293.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8033c80-e08b-4716-a0fa-2076f62c2b82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.