Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The dynamic development of measurement and recording techniques has been changing the way one conceives material strength. In this study, two different methods of evaluating the strength of fabrics are compared. The first is the typical and commonly used technique based on the use of a testing machine. The second method uses the so-called “fast camera” to monitor the entire process of the destruction of a fabric sample and analyse the behaviour of the fabric during the experiment. Both methods provide interesting data and present a very specific way of experimentally evaluating the strength of fabrics.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
332--334
Opis fizyczny
Bibliogr. 39 poz., tab.
Twórcy
autor
- Faculty of Civil and Anvironmental Engineering, Gdansk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Faculty of Civil and Anvironmental Engineering, Gdansk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Navigation and Naval Weapons Faculty, Polish Naval Academy, Inżyniera Jana Śmidowicza 69, 81-127 Gdynia, Poland
autor
- Mechanical-Electrical Engieering Faculty, Polish Naval Academy, Inżyniera Jana Śmidowicza 69, 81-127 Gdynia, Poland
Bibliografia
- 1. Tensile Structures (v. 1 & 2): Otto, Frei: 9780262650052: Amazon.com: Books. (n.d.). Retrieved from https://www.amazon.com/Tensile-Structures-v-1–2/dp/0262650053 (accessed Jan. 04, 2021).
- 2. Zienkiewicz, O.C., Taylor, R.L., & Zhu, J.Z. (2020). The finite element method: Its basis and fundamentals. Sixth edition. Retrieved from https://www.elsevier.com/books/the-finite-ele-ment-method-its-basis-and-fundamentals/zienkie-wicz/978–0-08–047277–5 (accessed Jan. 04, 2021).
- 3. Kłonica M., Kuczmaszewski J., Samborski S (2015) Effect of a notch on impact resistance of the epidian 57/Z1 epoxy material after „thermal shock”. Solid State Phenomena, 240, 161–167.
- 4. Bielawski R., Rządkowski W., Kowalik M.P., Kłonica K. (2020) Safety of aircraft structures in the context of composite element connection. International Review of Aerospace Engineering, 13(5), 159–164.
- 5. Skoczylas J., Samborski S., Kłonica M. (2021) A multilateral study on the FRP Composite’s matrix strength and damage growth resistance /Composite Structures, 63, 1–7.
- 6. ISO – ISO 1421:2017 – Rubber- or plastics-coated fabrics – Determination of tensile strength and elongation at break. Retrieved from https://www.iso.org/standard/2146.html (accessed Jan. 04, 2021).
- 7. Li, R., & Zhang, D. (2018). A visco-hyperelastic constitutive model for fiber-reinforced rubber composites. 33rd Technical Conference of the American Society for Composites, 5, 2957–2965. https://doi.org/10.12783/asc33/26145.
- 8. Popov, L.N., Malanov, A.G., Slutsker, G.Y., & Stalevich, A.M. (1993). Viscoelastic properties of technical fabrics. Fibre Chemistry, 25(3), 211–214. https://doi.org/10.1007/BF00551135.
- 9. Jekel, C.F., Venter, G., & Venter, M.P. (2017). Modeling PVC-coated polyester as a hypoelastic non-linear orthotropic material. Composite Structures, 161(161), 51–64. https://doi.org/10.1016/j.compstruct.2016.11.019.
- 10. Van Craenenbroeck, M., Puystiens, S., De Laet, L., Van Hemelrijck, D., & Mollaert, M. (2015). Biaxial testing of fabric materials and deriving their material properties - A quantitative study. (accessed Jan. 04, 2021).
- 11. Van Craenenbroeck, M., Puystiens, S., De Laet, L., Van Hemelrijck, D., & Mollaert, M. (2016). Quantitative study of the impact of biaxial test protocols on the derived material parameters for a PVC coated polyester fabric. Procedia Engineering, 155, 220–229. https://doi.org/10.1016/j.pro-eng.2016.08.023.
- 12. Ambroziak, A. (2015). Mechanical properties of Precontraint 1202S coated fabric under biaxial tensile test with different load ratios. Construction and Building Materials, 80, 210–224. https://doi.org/10.1016/j.conbuildmat.2015.01.074.
- 13. EN 17117–1:2018 – Rubber or plastics-coated fabrics – Mechanical test methods under biaxial stress states – Part 1: Tensile stiffness properties. Retrieved from https://standards.iteh.ai/catalog/standards/cen/5cb3de61–8eee-4da6-bdf7–8dd2284a62e1/en-17117–1-2018 (accessed Jan. 04, 2021).
- 14. Van Craenenbroeck, M., Mollaert, M., & De Laet, L. (2019). The influence of test conditions and mathematical assumptions on biaxial material parameters of fabrics. Engineering Structures, 200, 109691. https://doi.org/10.1016/j.engstruct.2019.109691.
- 15. Zerdzicki, K., Klosowski, P., & Woznica, K.(2019). Influence of service ageing on polyester-re-inforced polyvinyl chloride-coated fabrics reported through mathematical material models. Textile Research Journal, 89(8), 1472–1487. https://doi.org/10.1177/0040517518773374.
- 16. Monticelli, C., Carvelli, V., Fan, Z., Valletti, D., Nebiolo, M., & Messidoro, A. (2017). Biaxial Loading of a Textile Ribbons Structure for an Inflatable Module of Space Habitats. Experimental Techniques, 41(1), 9–17. https://doi.org/10.1007/s40799–016–0150–5.
- 17. Shi, T., Hu, J., Chen, W., & Gao, C. (2020). Biaxial tensile behavior and strength of architectural fabric membranes. Polymer Testing, 82. https://doi.org/10.1016/j.polymertesting.2019.106230.
- 18. Xu, J., Zhang, Y., Wu, M., & Zhao, Y. (2020). A phenomenological material model for PTFE coated fabrics. Construction and Building Materials, 237. https://doi.org/10.1016/j.conbuild-mat.2019.117667.
- 19. Ambroziak, A., & Klosowski, P. (2011). Review of constitutive models for technical woven fabrics in finite element analysis. AATCC Review, 11(3), 58–67.
- 20. Ambroziak, A., & Kłosowski, P. (2014). Mechanical properties for preliminary design of structures made from PVC coated fabric. Construction and Building Materials, 50, 74–81. https://doi.org/10.1016/j.conbuildmat.2013.08.060.
- 21. ISO – ISO 1421:2016 – Rubber- or plastics-coated fabrics – Determination of tensile strength and elongation at break. Retrieved from https://www.iso.org/standard/65588.html (accessed Jan. 10, 2021).
- 22. Klosowski, P., Zerdzicki, K., & Woznica, K. (2019). Influence of artificial thermal ageing on polyester-reinforced and polyvinyl chloride coated AF9032 technical fabric. Textile Research Journal, 89(21–22), 4632–4646. https://doi.org/10.1177/0040517519839934.
- 23. Roushdy, M. (2006). Comparative study of edge detection algorithms applying on the grayscale noisy image using morphological filter Medical image classification using random forest View project Vision-Based Topological SLAM for Autonomous Robots View project. Retrieved from http://cis.shams.edu.eg (accessed Jan. 16, 2021).
- 24. Mohan, V., Vijayarani, S., & Vinupriya, M.M. (2013). Performance analysis of canny and sobel edge detection algorithms in image mining privacy preserving data mining view project performance analysis of canny and sobel edge detection algorithms in image mining. Article in International Journal of Innovative Research in Computer and Communication Engineering, 3297. Retrieved from www.ijircce.com (accessed Jan. 16, 2021).
- 25. Gao, W., Zhang, X., Yang, L., & Liu, H. (2010). An improved Sobel edge detection. 2010 3rd International Conference on Computer Science and Information Technology, 5, 67–71. https://doi.org/10.1109/ICCSIT.2010.5563693.
- 26. Kanopoulos, N., Vasanthavada, N., & Baker, R. L. (1988). Design of an image edge detection filter using the Sobel operator. IEEE Journal of Solid-State Circuits, 23(2), 358–367. https://doi.org/10.1109/4.996.
- 27. Aqrawi, A.A., & Boe, T.H. (2011). Improved fault segmentation using a dip guided and modified 3D Sobel filter. SEG Technical Program Expanded Abstracts, 30(1), 999–1003. https://doi.org/10.1190/1.3628241.
- 28. McIlhagga, W. (2018). Estimates of edge detection filters in human vision. Vision Research, 153, 30–36. https://doi.org/10.1016/j.visres.2018.09.007.
- 29. Shrivakshan, G.T., & Chandrasekar, C. (2012). A Comparison of various edge detection techniques used in image processing. Retrieved from www. IJCSI.org (accessed Jan. 16, 2021).
- 30. PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB. Retrieved from https://openresearch-software.metajnl.com/articles/10.5334/jors.bl/ (ac-cessed Jan. 10, 2021).
- 31. Thielicke, W., & Stamhuis, E.J. (2014). PIVlab – towards user-friendly, affordable and accurate digi-tal particle image velocimetry in MATLAB. Journal of Open Research Software, 2(1). https://doi.org/10.5334/jors.bl.
- 32. Thielicke. (2014). The Flapping Flight of Birds. [S.n.].
- 33. Thielicke. (n.d.). Digital Particle Image Velocimetry. Retrieved from http://pivlab.blogspot.com.
- 34. Utami, T., Blackwelder, R.F., & Ueno, T. (1991). A cross-correlation technique for velocity field extraction from particulate visualization. Experiments in Fluids, 10(4), 213–223. https://doi.org/10.1007/BF00190391.
- 35. Huang, H., Dabiri, D., & Gharib, M. (1997). On errors of digital particle image velocimetry. Measurement Science and Technology, 8(12), 1427–1440. https://doi.org/10.1088/0957–0233/8/12/007.
- 36. Stamhuis, E.J., & Videler, J.J. (1995). Quantitative flow analysis around aquatic animals using laser sheet particle image velocimetry. Journal of Experimental Biology, 198(2), 283–294. Retrieved from https://pubmed.ncbi.nlm.nih.gov/9317812/(accessed Jan. 10, 2021).
- 37. Nauwelaerts, S., Stamhuis, E.J., & Aerts, P. (2005). Propulsive force calculations in swimming frogs I. A momentum-impulse approach. Journal of Experimental Biology, 208(8), 1435–1443. https://doi. org/10.1242/jeb.01509.
- 38. Stamhuis, E.J., & Nauwelaerts, S. (2005). Propulsive force calculations in swimming frogs II. Application of a vortex ring model to DPIV data. Journal of Experimental Biology, 208(8), 1445–1451. https://doi.org/10.1242/jeb.01530.
- 39. Robinson, S.K., & Kline, S.J. (1989). A review of quasi-coherent structures in a numerically simulated turbulent boundary layer. Retrieved from https://ntrs.nasa.gov/api/citations/19900004407/down-loads/19900004407.pdf (accessed Jan. 10, 2021).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e800ac72-aadc-4b18-876c-7c194758c324