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Abstract: The risk of a decline in the quality of electricity demand forecasts in the short term increases due to the 

increase in the installed capacity of renewable energy sources (RES). This is mainly due to the high daily varia-

bility of electricity production from renewable sources, which is strongly dependent on local weather conditions. 

Production from renewable energy sources is a very complex time series, additionally reinforced by a significant 

increase in its share in total production. This applies in particular to photovoltaic sources in low-voltage networks. 

There is therefore an urgent need to improve the quality of forecasts in this area. The main goal of the research 

was to verify statistical models that often achieve good results in the complex problem of forecasting electricity 

demand. The main objective, regarding daily forecasts of consumers' demand for electricity, was achieved through 

the implementa-tion of intermediate objectives, including the development of a methodology for estimating elec-

tricity generated by photovoltaic installations. 
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Introduction 

In the last 5 years, there has been an intensive development of small, distributed photovol-

taic sources installed for home use (Machał, Remiorz i Bukowiec, 2022). In February 2023, the 

installed capacity in one of the electricity supplier amounted to 2.89 GW. Forecasting the power 

output of these PV systems has become critical to market and grid efficiency. In the last 7 years, 

peak summer demand has reached over 4.1 GW. The share of installed capacity is already 70% 

and is still growing. The increase in micro-installations is already significantly changing the 

load characteristics of the graphics unit of this electricity supplier. Micro PV installations, with 

a capacity up to 50 kW, connected to the Distribution System Operator (DSO), are scattered 

over the area of several provinces. For all micro installations from this area, the electricity sup-

plier is obliged to make settlements in accordance with the rules set out in the Renewable En-

ergy Sources Act. 

https://doi.org/10.62316/RGWN2583
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Fig. 1. Distribution area where the electricity supplier has the largest number of customers with 

micro-installations (TAURON Dystrybucja S.A., 2023) 

 
Source: TAURON Dystrybucja S.A., 2023. 

Demand forecasts are typically based on statistical models (e.g., artificial neural networks) 

that can capture non-linear relationships between electricity load and a number of calendar var-

iables, historical data, and weather. A significant number of PV installations in the distribution 

network changes these relationships through a strong correlation of photovoltaic generation 

with weather conditions and variability over time. Therefore, previous forecasting approaches 

that do not take into account the significant impact of PV, will generally show worse forecast 

performance. 

Cloud cover is the main factor affecting the level of solar radiation intensity (Global Hori-

zontal Irradiation - GHI) reaching the earth's surface. Clouds have very different characteristics. 

They arise, move, change and dissipate within hours and sometimes even minutes. So when 

cloud cover moves or changes quickly, forecasting solutions should also be fast (Paul, De 

Michele, Najafi i Avesani, 2022). The current electricity contracting process assumes forecast-

ing demand for a horizon of 18 to 42 hours. In this case, the intensity of solar radiation (explan-

atory variable) is not sufficient to correctly forecast energy demand, because its forecasts are 

characterized by high uncertainty. 

GHI forecasting methods 

GHI forecasting has been developed in recent years using a wide range of methods. The 

most commonly used forecast models in this field are statistical models, models based on the 

sky images from ground-based cameras, satellite image models and numerical models (NWP). 

Statistical models are models based on time series prediction. The most popular of these 

are linear models such as autoregressive (AR) and autoregressive moving average (ARMA) and 

machine learning techniques such as artificial neural networks (ANN) (Heinemann, 2006) 

(Hontoria, Aguilera i Zufiria, 2002) (Lauret, David, Fock, Bastide i Riviere, 2006). 

Forecasting from ground-based sky images: models based on sky images obtained with 

180° cameras. Sky images lead to knowing cloud conditions a few minutes ahead 

 (Paulescu i inni, 2023) (Lin, Zhang i Wang, 2023). 
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Satellite image models. Geostationary satellites take pictures of the atmosphere all over the 

Earth with a time resolution of less than an hour. The large development that has taken place in 

satellite data acquisition in recent years makes this technique a very useful tool to improve GHI 

forecasting (Hammer, Heinemann i Lorenz, 1999) (Liwei i inni, 2020). 

Numerical weather forecasting models (NWP) based on physical models to estimate at-

mospheric conditions, including cloud formation and dissolution. Physical models are de-

scribed by differential equations solved by numerical methods. NWP models offer forecasting 

time horizons from a few hours to 15 days ahead (Heinemann, 2006) (Razagui, Abdeladim, 

Semaoui, Hadj Arab i S., 2020). 

Despite continued advances in weather forecasting, there is a high risk of error in forecast-

ing tomorrow's cloud sizes and paths (Deo i inni, 2023) (Lemos-Vinasco, Bacher i Møller, 

2021). An additional factor of forecast uncertainty is the increasingly common use of energy 

storage, heat storage and electrical energy management systems in the facility (Lemos-Vinasco, 

Bacher i Møller, 2021) (Zhao, Gao, Qian i Ge, 2021) (Wu i inni, 2022). Due to the fact that the 

forecast of electricity demand carried out on day n for day n+1 is based mainly on the solar 

radiation intensity, which is an uncertain explanatory variable, increasing uncertainty in these 

forecasts can be expected. 

Net demand, gross demand 

The figure below shows a workflow diagram for generating the amount of electricity from 

photovoltaic sources and then generating a gross demand profile. 

Fig. 2. Workflow diagram 

 
Source:own work. 

In accordance with the instructions of the distribution network (Instrukcja Ruchu i Eksploatacji 

Sieci Dystrybucyjnej, 2023), DSO determines the measurement data using the local measurement 

system. The DSO obtains this data in the form of: 

a) Hourly consumption/distribution of energy by the customer, determined on the basis of data 

from meters - hourly data 

b) Periodic states (indications) of energy meter counters, and DSO uses standard profiles to 

determine hourly values. 

Obtaining aggregated data 
on the demand of the 

electricity supplier for the 
selected area

Dividing data into working 
days and non-working days

Basing on reference data 
from selected PV 

installations (M1) or on the 
sent energy to the grid (M2), 
determining generation of all 

PV installations of the 
supplier data

Calculating gross demand 
by adding PV generation to 

net demand
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For the purposes of Balancing Market settlements, the DSO designates and makes available 

hourly measurement and settlement data as aggregated Energy Delivery Sites (EDS). These 

data, due to their relatively quick acquisition time - 3 days after the end of the day, are used to 

forecast area demand. Correction of data by the DSO in accordance with the instructions of the 

distribution network is performed in month m and may apply to month’s m-2, m-4 and m-15 

(for example, October, August this year and September from the previous year may be adjusted 

in December). 

Reconstruction of generating gross demand data are shown in the chart below (see fig. 3). 

Fig. 3. Reconstruction of gross demand  

 
Source:own work. 

The graph shows the demand profiles for March 29, 2023. It was sunny most of the day, 

with over 8 GWh of demand reduction due to PV generation. The dashed line in the graph 

shows the reconstructed gross demand , the orange area is the estimated demand reduction as  

a result of PV generation, and the blue area is the net demand. This approach to data analysis 

enables better forecasting of rapidly changing electricity demand. In addition to improved fore-

casting performance, the reconstructed gross demand profiles also provide important infor-

mation for grid operators. They can identify the amount of electricity that can suddenly “ap-

pear” on a clear day or “disappear” during periods of heavy rain or snowfall (Power Grid, 2023). 

Electricity net demand, which takes into account the impact of behind-the-meter generation 

by prosumers, is shown in the chart below (see fig. 4). 
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Fig. 4. Electricity net demand  

 
Source:own work. 

The presented daily profiles contain data from March 1 to April 11, 2023 and include only 

working days. The previous characteristic profile with a night depression and a day peak was 

disturbed by the generation of PV installations. The current daily profiles in the literature are 

called the "duck curve" (Rubasinghe i inni, 2023) (Qingchun Hou a, Du, Miao, Peng i Kang, 

2019). With generation data from these sources, it is possible to reconstruct the actual 

(𝑍𝑎𝑝𝑛𝑒𝑡𝑡𝑜) electricity demand profile (𝑍𝑎𝑝𝑏𝑟𝑢𝑡𝑡𝑜) described with the formula: 

𝑍𝑎𝑝𝑏𝑟𝑢𝑡𝑡𝑜ℎ
= 𝑍𝑎𝑝𝑛𝑒𝑡𝑡𝑜ℎ

+ 𝐸𝐺𝑒𝑛ℎ
 

 

Photovoltaic generation (𝐸𝐺𝑒𝑛ℎ
) was determined indirectly, according to the method de-

scribed in chapter 0. As a result of this work, a gross demand profile was created. It is shown 

in Figure 5. 
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Fig. 5. Electricity gross demand  

 

Source:own work. 

To compare the gross demand and net demand profiles, the coefficient of variation was 

used (Kolańska-Płuska i Gallus, 2022), which can be defined by the formula: 

𝐶𝑣 =
𝜎

𝑥̅
 

Cv is the coefficient of profile variation, 𝑥̅ is the average demand in a day, 𝜎 is the sample 

standard deviation defined by the formula: 

𝜎 =  √
∑ (𝑥𝑖 − 𝑥̅)2𝑁

𝑖=1

𝑁
 

𝑥𝑖 −is the demand for i-hour 

The interpretation of the coefficient Cv is based on comparing it with standard values. The 

coefficient is expressed as a percentage. Value below 25% means low volatility. Between 25% 

and 45% means average volatility and between 45% and 100% means strong volatility. 

Autoregressive models (ARX - arima and mARX - arima with an independent variable 

(Nowotarski i Weron, 2016)) were used for the forecasts. An integrated seasonal auto-regres-

sion and moving average model ARIMA(p, d, q)×(P, D, Q)m were used to forecast the series 

(Koohi-Kamali, Abd. Rahim i Sobri, 2018): 
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𝑦𝑡 is the term of the time series, ξ  𝑡
  is a white noise process with zero mean and variance σ 2, 

m is the length of the weekly cycle (168 h), B is the backshift operator, d and D are the orders 

of differentiation (ordinary and seasonal), φ(.), Φ(.), θ(.) and Θ(.) are polynomials of degree p, 

q, P and Q, respectively, and c is a constant. 

Forecasts were compared on the basis of standard assessments: Mean Absolute Percentage 

Error (MAPE) and Root Mean Squared Error (RMSE). MAPE is one of the most commonly 

used KPIs to measure forecast accuracy. It is calculated according to the formula: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑦 − 𝑦′|

𝑦

𝑛

1

 

y is actual data, y' is forecast 

MAPE is the average of absolute errors divided by demand (each period separately). MAPE 

divides each error individually by the actual data, so it is skewed: high errors during periods of 

low demand significantly increase MAPE. For this reason, MAPE optimization will result in  

a forecast that will most likely be below demand. 

RMSE is a very helpful indicator. It is defined as the square root of the mean squared error 

and can be calculated by the formula: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦 − 𝑦′)2

𝑛

1

 

y is actual data, y' is forecast 

RMSE does not treat every error the same. Gives more weight to the most significant errors. 

This means that it only takes one big mistake to get a high RMSE.  

The calculations were performed on a computer with an Intel Core i5 processor (2 x 2.40GHz), 

16 GB of installed RAM using Matlab software (Mathworks, 2021). 

Generation behind the meter 

A process of collecting data of the power installed in photovoltaic micro installations and 

their actual generation is proposed to take this factor into account in demand forecasts. This 

will enable monitoring geospatial trends in the growth of rooftop micro-installations. 

Due to the high number of photovoltaic micro installations (hundreds of thousands), it is not 

possible to directly monitor the production of all PV installation (Gong, chen, Ji, Tang i Zhou, 

2023). It is necessary to obtain data from a sufficient number of PV installation, which will be 

the basis for forecasting. In order to achieve this, data from several reference installations, were 

obtained. The data was divided geographically in the area of operation of the electricity supplier 

and hourly averaged in the next step. The spatial arrangement of the reference micro installa-

tions is shown on the map below (Figure 6 ). This method was marked as M1. 
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Fig. 6. Spatial distribution of reference photovoltaic installations with installed power 

 
Source:own work. 

Data on installed power and efficiency are scaled to determine the production of PV instal-

lations, taking into account the effects of local weather and the geographical heterogeneity of 

PV mirco installations. The estimated amount of energy produced by micro installations in the 

M1 method was determined in accordance with the following algorithm: 

1. Obtaining data on hourly production from reference PV installations 

2. Calculation of the coefficient of energy produced according to the formula: 

𝑊𝐸𝑅𝑖ℎ
=

𝐸𝑅𝑖ℎ

𝑃𝑖
 

𝐸𝑅𝑖ℎ- Hourly actual production data from i - installation [kWh] 

𝑃𝑖- Installed power of i - installation [kWp] 

3. Calculation of the average factor of energy produced in an hour: 

𝑊𝐸𝑅ℎ
=

1

𝑛
∑ 𝑊𝐸𝑅𝑖ℎ

𝑛

𝑖

 

n - number of reference installations 

4. Determination of the estimated generation of the area in an hour, according to the formula: 
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𝐸𝑂𝑏𝑠𝑧ℎ
= 𝑃𝑂𝑏𝑠𝑧ℎ

𝑊𝐸𝑅ℎ
 

𝑃𝑂𝑏𝑠𝑧ℎ
 - power installed in a given period in the area [kWp]3 

An imperfection in this study is the relatively small number of PV installations with high 

installed power. It was therefore decided to use the data of electricity sent by prosumers to the 

distribution grid. The estimated amount of energy produced by micro-installations in the M2 

method was determined in accordance with the following algorithm: 

1. Obtaining data on the amount of electricity send to the distribution grid by micro-installations 

( 𝐸𝑂𝐷). 

2. Choosing of reference PV installations in the selected area. When choosing an installation, 

you should choose places where the density of installations is the highest and nontypical 

installations should be rejected (e.g. facing east or west, installations on trackers that achieve 

above-average performance). 

3. Obtaining data on the amount of energy generated by reference installations. The data can be 

obtained, for example, from the website www.pvmonitor.pl . 

4. Calculating the coefficient of energy produced according to the formula: 

𝑊𝐸𝑅𝑖𝑡
=

𝐸𝑅𝑖𝑡

𝑃𝑖
 

𝐸𝑅𝑖𝑡- actual data on production from i -installation in the period t [kWh], t – hour, day, week, 

month 

𝑃𝑖- Installed power of this installation [kWp] 

5. Calculating the average coefficient of energy produced in period t: 

𝑊𝐸𝑅𝑡
=

1

𝑛
∑ 𝑊𝐸𝑅𝑖𝑡

𝑛

𝑖

 

n - number of reference installations 

6. Determining the estimated PV generation of the area in period t, according to the formula: 

𝐸𝐺𝑒𝑛𝑡
= 𝑃𝑂𝑏𝑠𝑧𝑡

𝑊𝐸𝑅𝑡
 

𝑃𝑂𝑏𝑠𝑧𝑡
 - power installed in period t in the studied area [kWp] 

7. Determining the coefficient of energy sent to the distribution network: 

𝑊𝐸𝑂𝑡
= 𝐸𝑂𝐷𝑡

/𝐸𝐺𝑒𝑛𝑡
 

8. Determining the hourly generation profile: 

𝐸𝐺𝑒𝑛ℎ
= 𝐸𝑂𝐷ℎ

/𝑊𝐸𝑂𝑡
 

 
3 Installed capacity varies over time and is currently on an upward trend. 

http://www.pvmonitor.pl/
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Results 

In the analyzed data, due to the impact of photovoltaic generation on the level of electricity 

demand, the variability at night is over 3 times lower than the variability during daytime hours. 

The averaged statistics are shown in the table below (see fig. 7). 

Fig. 7. Average statistics of daily profiles  

Pointer – name 
Working Net  

Demand 

Working 

Gross  

Demand 

Holiday Net 

Demand 

Holiday 

Gross  

Demand 

Minimum 958 1 222 806 1 012 

Maximum 1 527 1,555 1 396 1 439 

Mean 1 248 1 393 1 108 1 238 

Standard deviation 146 82 174 122 

Average coefficient 

volatility (Cv) 
12% 6% 16% 10% 

Source:own work. 

For the net demand in analyzed period, average coefficient on working days was 12%, and 

16% on holidays. After transforming the data into gross demand according to the M1 method, 

this coefficient was reduced to 6% on working days and 10% on holidays. For comparison, in 

the corresponding period of 2016, when the installed power in PV was approximately 0.2% of 

the currently installed power, the average coefficient of variation was 7.5%. Average hourly 

coefficients of variation are presented in the chart below (Figure 8). 
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Fig. 8. Average hourly coefficients of variation by working days and holidays  

 
Source:own work. 

The results of forecasting in the selected area are presented below. The data for learn mod-

els was 2022 year, and the test period was the data from January 1 to March 31, 2023. The data 

were presented in the following layout: 

• Net demand - data unchanged. 

• Gross Demand M1 - PV generation has been added to the net demand data. Generation esti-

mated on the basis of the reference PV power plants. 

• M2 Gross Demand - PV generation has been added to the net demand data. Generation has 

been estimated on the basis of the reference PV installations and the amount of electricity 

sent to the distribution network by prosumers. 

• Demand 2016 - PV generation was omitted due to the little PV installed power.  
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Fig. 9. Results of comparing forecasts based on transformed demand data  

Model Input data Average MAPE [%] Average RMSE [MWh] 

ARX net demand 6.97 85.96 

mARX net demand 6.91 83.86 

Naive net demand 7.05 87.39 

ARX Gross demand M1 3.32 45.7 

mARX Gross demand M1 3.15 43.3 

Naive Gross demand M1 4.04 54.1 

ARX Gross demand M2 2.97 40.30 

mARX Gross demand M2 2.85 38.72 

Naive Gross demand M2 3.68 48.64 

ARX Demand 2016 3.20 39.9 

mARX Demand 2016 3.16 40.0 

Naive Demand 2016 4.55 54.77 

Source:own work. 

From the presented results (see fig. 9) we conclude that after transforming data from net 

value to gross value, electricity demand data is easier to forecast. The average absolute forecast 

error decreased from 6.9% to 2.9% and the RMSE error decreased from 84 MWh to 38 MWh. 

The deviations of forecasts based on transformed data are close to the deviations of forecasts 

based on data from 2016, in which the share of photovoltaics was negligible. The coefficient of 

variation for gross demand decreased from 12% to 6% for working days and from 16% to 10% 

for holidays.  
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