PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effects of ascent recharge on deep exploitable aquifers on the North European Plain (a case study of the Rogoźno salt anticline, Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, we analyse the impact of ascending brines from the Mesozoic basement on the formation of hydrogeological conditions of deep exploitable aquifers. In the North European Plain, there are numerous salt structures with associated tectonic deformations, which form migration zones of saline waters from the Mesozoic basement to the Cenozoic cover. This creates a geogenic threat to exploitable aquifers, especially in terms of groundwater exploitation conditions. Previous studies of these phenomena had been conducted on a regional scale and focused mainly on the distribution of chlorides in receiver aquifers without detailed analysis of hydrodynamical and hydrogeochemical effects of the ascent. As part of research into the topic, it is necessary at this point to develop the methodology of assessment of geogenic risks for groundwater, for example for reasons of protection of fresh groundwater resources. As the research area, a halotectonic anticline region was chosen, where the Mesozoic basement is characterized by strong tectonic deformation, and the deepest Cenozoic aquifer has a regional spread. Some simple analyses allowed to clearly identify the zones of saline groundwater ascent along tectonic discontinuities of the Mesozoic bedrock. This phenomenon causes the appearance of waters with a mineralisation up to 2000 mg/L in the exploitable aquifer. Ascent recharge through active faults causes the presence of zones with anomalously high piezometric pressure in the cover of the fault overlay. The shape of these zones is correlated with the course of tectonic deformations. Influence of geogenic pollution is greater in the marginal zones of the anticline than above it. For the full assessment of ascent impact on hydrogeological conditions of the receiver, it is necessary not only to analyse chloride concentrations, but also other groundwater components – i.e. sulphates. Hydrogeochemical analysis may allow for identification of the shallower and deeper ascent recharge zones from the Mesozoic basement. Comprehensive identification of these factors, even in the case of poor tectonic control, can contribute to optimization of groundwater exploitation and protection conditions in the areas potentially and actually threatened by ascent.
Rocznik
Strony
962--972
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Adam Mickiewicz University, Faculty of Geographical and Geological Sciences, Institute of Geology, Department for Hydrogeology and Water Protection, Krygowskiego 12, 61-680 Poznań, Poland
  • Adam Mickiewicz University, Faculty of Geographical and Geological Sciences, Institute of Geology, Department for Hydrogeology and Water Protection, Krygowskiego 12, 61-680 Poznań, Poland
Bibliografia
  • 1. Atlas geostrukturalny i naftowy, 1973. Część III. Ropo- i gazonośność synklinorium mogileńsko-łódzkiego na tle budowy geologicznej (in Polish). Skala 1:200 000. Instytut Geologiczny - Zjednoczone Górnictwo Naftowe.
  • 2. Bojarski, L., ed., 1996. Hydrochemical and Hydrodynamic Atlas of the Paleozoic and Mesozoic and Ascensive Salinity of Ground Water in the Polish Lowlands 1: 1,000,000 (in Polish with English summary). Cartographic Publishing House of the Polish Agency for Ecology, Warszawa.
  • 3. Bojarski, L., Sokołowski, A., 1994. Zagrożenie ascenzyjnym zasoleniem wód zwykłych w utworach kredy dolnej niecki łódzkiej (in Polish). Przegląd Geologiczny, 42: 459-464.
  • 4. Burzyński, K., Kozerski, B., Sadurski, A., 1999. Salt water intrusion and ascension processes on the Polish Baltic coast (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 388: 35-48.
  • 5. Burzyński, K., Krawiec, A., Sadurski, A., 2004. The origin and mobilization of deep brines to the aquifer system by considering the circulation systems existing on the Polish western coast of the Baltic Sea. Proceedings of the 18th Salt Water Intrusion Meeting, Cartagena: 521-531.
  • 6. Dadlez, R., 1989. Epicontinental Permian and Mesozoic basins in Poland (in Polish with English summary). Kwartalnik Geologiczny, 33 (2): 175-198.
  • 7. Dadlez, R., Marek, S., 1969. Structural style of the Zechstein-Mesozoic complex in some areas of the Polish Lowland (in Polish with English summary). Kwartalnik Geologiczny, 13 (3): 543-565.
  • 8. Dowgiałło, J., 1965. Solanki Pomorza Zachodniego (in Polish). Szczecińskie Towarzystwo Naukowe. Wydział Nauk Matematycznych i Technicznych, Szczecin, 4.
  • 9. Duczmal-Czernikiewicz, A., 2013. Evidence of soils and palaeosols in the Poznań Formation (Neogene, Polish Lowland). Geological Quarterly, 57 (2): 189-204.
  • 10. Evans, D.G., Nunn, J.A., Hanor, J.S., 1991. Mechanisms driving groundwater flow near salt domes. Geophysical Research Letters, 18: 927-930.
  • 11. Gogołek, W., 1999. Objaśnienia do Szczegółowej Mapy Geologicznej Polski w skali 1:50 000, ark. Obrzycko (in Polish). Ministerstwo Środowiska, Warszawa.
  • 12. Górecki, W., ed., 1990. Atlas of the Geothermal Waters of Polish Lowland. Early Jurassic and Early Cretaceous Reservoirs. University of Science and Technology Instrtute of Fossil Fuels, Kraków.
  • 13. Górski, J., 1989. The main hydrochemical problems of Cainozoic aquifers located in Central Wielkopolska (Great Poland) (in Polish with English summary). Zeszyty Naukowe Akademii Górniczo-Hutniczej, 45.
  • 14. Górski, J., Rasała, M., 2008. Hydrogeology of the chosen salt domes of the Kujawy region - cognitive and utilitarian aspects (in Polish with English summary). Geologos, 13, Monographiae, 5.
  • 15. Grube, A., 2000. Widespread geogenic salt water occurrence in North Germany - demonstrated on the basis of a generalized map. Proceedings of the 16th Salt Water Intrusion Meeting, Międzyzdroje-Wolin Island: 55-62.
  • 16. Gurwin, J., Krawiec, A., 2012. Identification of groundwater flow system of the Wolin Island (in Polish with English summary). Biuletyn Państwowego instytutu Geologicznego, 451: 53-62.
  • 17. Jezierski, P., Wiśniowski, Z., Hoc, R., 2014. Zagrożenia jakości wód występowaniem jonu chlorkowego w wodach podziemnych na obszarze północno-zachodniej Polski (in Polish). Polskie Zrzeszenie Inżynierów i Techników Sanitarnych, 20: 127-138.
  • 18. Kaczor, D., 2006. The salinity of groundwater in Mesozoic and Cenozoic aquifers of NW Poland - origin and evolution. Studia Geologica Polonica, 126: 5-76.
  • 19. Kloppmann, W., Negrel, P., Casanova, J., Klinge, H., Schelkes, K., Guerrot, C., 2001. Halite dissolution derived brines in the vicinity of a Permian salt dome (N German Basin). Evidence from boron, strontium, oxygen, and hydrogen isotopes. Geochimica et Cosmochimica Acta; 65: 4087-4101.
  • 20. Krawiec, A., 2013. The origin of chloride anomalies in the groundwaters of the Polish Baltic coast (in Polish with English summary). Wyd. Nauk. UMK. Toruń.
  • 21. Krzywiec, P., Peryt, T.M., Kiersnowski, H., Pomianowski, P., Czapowski, G., Kwolek, K., 2017. Permo-Triassic evaporites of the Polish Basin and their bearing on the tectonic evolution and hydrocarbon system, an overview. In: Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins. Tectonics and Hydrocarbon Potential (eds. J.I. Soto, J.F. Flinch and G. Tari): 243-262. Elsevier Publishing.
  • 22. Kucharski, R., Twarogowski, J., 1995. Dynamika rozprzestrzeniania się zasolenia I zanieczyszczeń wód podziemnych na obszarze Ciechocinka (in Polish). Przegląd Geologiczny, 43: 483-486.
  • 23. Langevin, C.D., Guo, W., 2006. MODFLOW/MT3DMS-based simulation of variable-density ground water flow and transport. Ground Water, 44: 339-351.
  • 24. Macioszczyk, A., Pich, J., Płochniewski, Z., 1972. Chemical nature of ground waters in Tertiary formations within the area of Poland (except for the Carpathians) (in Polish with English summary). Kwartalnik Geologiczny, 16 (2): 428-445.
  • 25. Magri, F., Bayer, U., Pekdeger, A., Otto, R., Thomsen, C., Maiwald, U., 2009. Salty groundwater flow in the shallow and deep aquifer systems of the Schleswig-Holstein area (North German Basin). Tectonophysics, 470: 183-194.
  • 26. Mullaney, J.R., Lorenz, D.L., Arntson, A.D., 2009. Chloride in Groundwater and Surface Water in Areas Underlain by the Glacial Aquifer System, Northern United States. U.S. Geological Survey Scientific Investigations Report 2009-5086.
  • 27. Pożaryski, W., 1964. Outline of Paleozoic and Mesozoic tectonics of the Polish Lowland (in Polish with English summary). Kwartalnik Geologiczny, 8 (1): 1-41.
  • 28. Stemulak, J., 1959. The Szamotuły-Oborniki structure (western Poland) in view of recent drilling and geological investigation (in Polish with English summary). Kwartalnik Geologiczny, 3 (2): 296-309.
  • 29. Szałajdewicz, J., 2005. Objaśnienia do Szczegółowej Mapy Geologicznej Polski w skali 1: 50 000, ark. Parkowo (in Polish). Ministerstwo Środowiska, Warszawa, 35 pp.
  • 30. Zarroca, M., Bach, J., Linares, R., Pellicer, X.M., 2011. Electrical methods (VES and ERT) for identifying, mapping and monitoring different saline domains in coastal plain region (Alt Emporda, Northern Spain). Journal of Hydrology, 409: 407-422.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7f53aea-cc13-4a40-9343-da154f8cb7fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.