PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

WebGIS Open-source Platform for Localizations of New P2G Plants in Sicily

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The climatic emergency that involves the globe has led targets of greenhouse gas reduction in the EU and all over the world. In this scenario, recent advances in renewable renewable energy sources (RESs) have focused interest on the diffusion of power supplies that are produced by photovoltaic and wind plants. The non-programmable nature of these energy sources has led recent studies to consider the power-to-gas (P2G) solution as an opportunity for employing the curtailed electric energy by converting it into hydrogen. The localizations of P2G plants depend on several factors regarding power production, distances, and population distributions. The necessity of integrating these factors led this work to study the development of a cost function that is hosted by a webbased GIS (geographic information system) platform, thus allowing for the storage, elaboration, and web fruition of an entire data set that is related to the possible new localizations of P2G plants. The structure is based on open-source technology and creates a solution that is easily employable by specialists. The developed platform is composed of different remotely connected blocks that are solely based on open-source technology and is focused the interest on the territory of Sicily (Italy). GIS software, a RDBMS database, a geospatial server (Geoserver ), a Python optimization module, and a WebGIS visualizer are integrated. This work represents a scientific contribution to the management of energy sources, with a particular focus on policies that are based on hydrogen technology. In fact, different data sets that contain several levels of information that are related to the management and the localization of P2G plants will be even further employed in the future.
Słowa kluczowe
Rocznik
Strony
5--25
Opis fizyczny
Bibliogr. 53 poz., il.
Twórcy
  • University of Florence, Department of Civil and Environmental Engineering (DICEA), Florence, Italy
  • University of Palermo, Department of Engineering, Italy
Bibliografia
  • Jacobson M., Delucchi M.A., Cameron M.A., Coughlin S.J., Hay C.A., Manogaran I.P., Shu Y., von Krauland A.-K.: Impacts of Green New Deal Energy plans on grid stability, costs, jobs, health, and climate in 143 countries. One Earth, vol. 1(4), 2019, pp. 449–463. https://doi.org/10.1016/j.oneear.2019.12.003.
  • Simonis B., Newborough M.: Sizing and operating power-to-gas systems to absorb excess renewable electricity. International Journal of Hydrogen Energy, vol. 42(34), 2019, pp. 21635–21647. https://doi.org/10.1016/j.ijhydene.2017.07.121.
  • McDonagh S., O’Shea R., Wall D., Deane J., Murphy J.: Modelling of a powerto-gas system to predict the levelised cost of energy of an advanced renewable gaseous transport fuel. Applied Energy, vol. 215, 2018, pp.444–456. https://doi.org/10.1016/j.apenergy.2018.02.019.
  • Thema M., Bauer F., Sterner M.: Power-to-Gas: Electrolysis and methanation status review. Renewable and Sustainable Energy Reviews, vol. 112, 2019, pp. 775–787. https://doi.org/10.1016/j.rser.2019.06.030.
  • Götz M., Lefebvre J., Mörs F., McDaniel Koch A., Graf F., Bajohr S., Reimert R., Kolb T.: Renewable Power-to-Gas: A technological and economic review. Renewable Energy, vol. 85, 2016, pp. 1371–1390. https://doi.org/10.1016/j.renene.2015.07.066.
  • Varone A., Ferrari M.: Power to liquid and power to gas: An option for the German Energiewende. Renewable and Sustainable Energy Reviews, vol. 45, 2015, pp. 207–218. https://doi.org/10.1016/j.rser.2015.01.049.
  • Wulf C., Linßen J., Zapp P.: Review of Power-to-Gas projects in Europe. Energy Procedia, vol. 155, 2018, pp. 367–378. https://doi.org/10.1016/j.egypro.2018.11.041.
  • Mazza A., Bompard E., Chicco G.: Applications of power to gas technologies in emerging electrical systems. Renewable and Sustainable Energy Reviews, vol. 92, 2018, pp. 794–806. https://doi.org/10.1016/j.rser.2018.04.072.
  • Malczewski J.: GIS-based land-use suitability analysis: A critical overview. Progress in Planning, vol. 62(1), 2004, pp. 3–65. https://doi.org/10.1016/j.progress.2003.09.002.
  • Bubbico R., Di Cave S., Mazzarotta B.: Risk analysis for road and rail transport of hazardous materials: A GIS approach. Journal of Loss Prevention in the Process Industries, vol. 17(6), 2004, pp. 483–488. https://doi.org/10.1016/j.jlp.2004.08.011.
  • Riccioli F., El Asmar T.: GIS Technique for Territorial Analysis. [in:] Andreopoulou Z., Manos B., Polman N., Viaggi D. (eds.), Agricultural and Environmental Informatics, Governance and Management: Emerging Research Applications, IGI Global, Hershey 2011, pp. 425–445. https://doi.org/10.4018/978-1-60960-621-3.ch022.
  • Valenti F., Porto S., Chinnici G., Cascone G., Arcidiacono C.: A GIS-based model to estimate citrus pulp availability for biogas production: An application to a region of the Mediterranean Basin. Biofuels, Bioproducts and Biorefining, vol. 10(6), 2016, pp. 710–727. https://doi.org/10.1002/bbb.1707.
  • Castelluccio F., D’Orso G., Migliore M., Scianna A.: GIS Infomobility for Travellers. [in:] Gervasi O., Murgante B., Misra S., Rocha A.M.A.C., Torre C.M., Taniar D., Apduhan B.O., Stankova E., Wang S. (eds.), Computational Science and Its Applications – ICCSA 2016: 16th International Conference, Beijing, China, July 4–7, 2016: Proceedings: Part III, Lecture Notes in Computer Science, vol. 9788, Springer, Cham 2016, pp. 519–529. https://doi.org/10.1007/978-3-319-42111-7_41.
  • Gahleitner G.: Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications. International Journal of Hydrogen Energy, vol. 38(5), 2013, pp. 2039–2061. https://doi.org/10.1016/j.ijhydene.2012.12.010.
  • Balla D., Zichar M., Kiss E., Szabó G., Mester T.: Possibilities for assessment and geovisualization of spatial and temporal water quality data using a WebGIS application. ISPRS International Journal of Geo-Information, vol. 11(2), 2022, 108. https://doi.org/10.3390/ijgi11020108.
  • Patera A., Pataki Z., Kitsiou D.: Development of a WebGIS application to assess conflicting activities in the framework of marine spatial planning. Journal of Marine Science and Engineering, vol. 10(3), 2022, 389. https://doi.org/10.3390/jmse10030389.
  • Scianna A., Gaglio G., La Guardia M., Nuccio G.: Development of a virtual CH path on WEB: Integration of a GIS, VR, and other multimedia data. [in:] Ioannides M., Fink E., Cantoni L., Champion E. (eds.), Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection: 8th International Conference, EuroMed 2020, Virtual Event, November 2–5, 2020: Revised Selected Paper, Lecture Notes in Computer Science, vol. 12642, Springer, Cham 2021, pp. 178–189. https://doi.org/10.1007/978-3-030-73043-7_15.
  • Vacca G., Fiorino D., Pili D.: A Spatial Information System (SIS) for the architectural and cultural heritage of Sardinia (Italy). ISPRS International Journal of Geo-Information, vol. 7(2), 2018, 49. https://doi.org/10.3390/ijgi7020049.
  • Capolupo A., Monterisi C., Saponieri A., Addona F., Damiani L., Archetti R., Tarantino E.: An interactive WebGIS framework for coastal erosion risk management. Journal of Marine Science and Engineering, vol. 9(6), 2021, 567. https://doi.org/10.3390/jmse9060567.
  • La Guardia M., Koeva M., D’Ippolito F., Karam S.: 3D data integration for web based open source WebGL interactive visualisation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLVIII-4/W4-2022, 2022, pp. 89–94. https://doi.org/10.5194/isprs-archives-XLVIII-4-W4-2022-89-2022.
  • Toro Herrera J.F., Carrion D., Brovelli M.A.: A collaborative platform for water quality monitoring: Simile WebGIS. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLIII-B4-2021, 2021, pp. 201–207. https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-201-2021.
  • Suni Y.P.K., Sujono J., Istiarto: Identifying potential sites for rainwater harvesting ponds (embung) in Indonesia’s semi-arid region using GIS-based MCA techniques and satellite rainfall data. PLOS ONE, vol. 18(6), 2023, e0286061. https://doi.org/10.1371/journal.pone.0286061.
  • Aziz S.F., Abdulrahman K.Z., Ali S.S., Karakouzian M.: Water harvesting in the Garmian Region (Kurdistan, Iraq) using GIS and remote sensing. Water, vol. 15(3), 2023, 507. https://doi.org/10.3390/w15030507.
  • Ahmed M.S., Mahmoud N., Manabu F., Chihiro Y., Mona G.I.: Delineating suitable zones for solar-based groundwater exploitation using multi-criteria analysis: A techno-economic assessment for meeting sustainable development goals (SDGs). Groundwater for Sustainable Development, vol. 25, 2024, 101087. https://doi.org/10.1016/j.gsd.2024.101087.
  • Gahalod N.S.S., Rajeev K., Pant P.K., Binjola S., Yadav R.L., Meena R.L.: Spatial assessment of flood vulnerability and waterlogging extent in agricultural lands using RS-GIS and AHP technique – a case study of Patan district Gujarat, India. Environmental Monitoring and Assessment, vol. 196, 2024, 338. https://doi.org/10.1007/s10661-024-12482-9.
  • Mikias B.M.: Potential landfill site selection for solid waste disposal using GIS-based multi-criteria decision analysis (MCDA) in Yirgalem Town, Ethiopia. Cogent Engineering, vol. 11(1), 2024, 2297486. https://doi.org/10.1080/23311916.2023.2297486.
  • Giallanza A., Porretto M., Puma G., Marannano G.: A sizing approach for standalone hybrid photovoltaic-wind-battery systems: A Sicilian case study. Journal of Cleaner Production, vol. 199, 2018, pp. 817–830. https://doi.org/10.1016/j.jclepro.2018.07.223.
  • La Guardia M., D’Ippolito F., Cellura M.: Construction of a WebGIS tool based on a GIS semiautomated processing for the localization of P2G plants in Sicily (Italy). ISPRS International Journal of Geo-Information, vol. 10(10), 2021, 671. https://doi.org/10.3390/ijgi10100671.
  • La Guardia M., D’Ippolito F., Cellura M.: A GIS-based optimization model finalized to the localization of new power-to-gas plants: The case study of Sicily (Italy). Renewable Energy, vol. 197, 2022, pp. 828–835. https://doi.org/10.1016/j.renene.2022.07.120
  • Grippa T., Lennert M., Beaumont B., Vanhuysse S., Stephenne N., Wolff E.: An open-source semi-automated processing chain for urban object-based classification. Remote Sensing, vol. 9(4), 2017, 358. https://doi.org/10.3390/rs9040358.
  • Neteler M., Bowman M., Landa M., Metz M.: GRASS GIS: A multi-purpose open source GIS. Environmental Modelling & Software, vol. 31, 2012, pp. 124–130. https://doi.org/10.1016/j.envsoft.2011.11.014.
  • Neteler M., Beaudette D., Cavallini P., Lami L., Cepicky J.: GRASS GIS. [in:] Hall B.G., Leahy M.G. (eds.), Open Source Approaches in Spatial Data Handling, Advances in Geographic Information Science, Springer, Berlin, Heidelberg 2008, pp. 171–199. https://doi.org/10.1007/978-3-540-74831-1_9.
  • Coetzee S., Ivánová I., Mitasova H., Brovelli M.: Open geospatial software and data: A review of the current state and a perspective into the future. ISPRS International Journal of Geo-Information, vol. 9(2), 2020, 90. https://doi.org/10.3390/ijgi9020090.
  • Mishra S., Chander S., Pradhan R., Dubey A.K., Oza M.P., Sharma S.A.: WebGIS for water level monitoring and flood forecasting using Open Source Technology. Journal of Geomatics, vol. 14(1), 2020, pp. 49–54.
  • Can R., Kocaman S., Ok A.: A WebGIS framework for semi-automated geodatabase updating assisted by deep learning. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLIII-B5-2021, 2021, pp. 13–19. https://doi.org/10.5194/isprs-archives-XLIII-B5-2021-13-2021.
  • Menegon S., Depellegrin D., Farella G., Sarretta A., Venier C., Barbanti A.: Addressing cumulative effects, maritime conflicts and ecosystem services threats through MSP-oriented geospatial webtools. Ocean & Coastal Management, vol. 163, 2018, pp. 417–436. https://doi.org/10.1016/j.ocecoaman.2018.07.009.
  • Woo H., Acuna M., Moroni M., Taskhiri M., Turner P.: Optimizing the location of biomass energy facilities by integrating Multi-Criteria Analysis (MCA) and Geographical Information Systems (GIS). Forests, vol. 9(10), 2018, 585. https://doi.org/10.3390/f9100585.
  • Tahvanainen T., Anttila P.: Supply chain cost analysis of long-distance transportation of energy wood in Finland. Biomass and Bioenergy, vol. 35(8), 2011, pp. 3360–3375. https://doi.org/10.1016/j.biombioe.2010.11.014.
  • Al-Kurdi N., Pillot B., Gervet C., Linguet L.: Towards robust scenarios of spatio-temporal renewable energy planning: A GIS-RO approach. [in:] Schiex T., de Givry S. (eds.), Principles and Practice of Constraint Programming: 25th International Conference, CP 2019: Stamford, CT, USA, September 30 – October 4, 2019: Proceedings, Lecture Notes in Computer Science, vol. 11802, Springer, Cham 2019, pp. 729–747. https://doi.org/10.1007/978-3-030-30048-7_42.
  • Al Garni H.Z., Awasthi A.: Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Applied Energy, vol. 206, 2017, pp. 1225–1240. https://doi.org/10.1016/j.apenergy.2017.10.024.
  • Kocabaldır C., Yücel M.A.: GIS-based multicriteria decision analysis for spatial planning of solar photovoltaic power plants in Çanakkale province, Turkey. Renewable Energy, vol. 212, 2023, pp. 455–467. https://doi.org/10.1016/j.renene.2023.05.075.
  • Sánchez-Lozano J.M., Henggeler Antunes C., García-Cascales M.S., Dias L.: GIS-based photovoltaic solar farms site selection using ELECTRE-TRI: Evaluating the case for Torre Pacheco, Murcia, Southeast of Spain. Renewable Energy, vol. 66, 2014, pp. 478–494. https://doi.org/10.1016/j.renene.2013.12.038.
  • Islam Md. R., Aziz Md. T., Alauddin M., Kader Z., Islam Md. R.: Site suitability assessment for solar power plants in Bangladesh: A GIS-based analytical hierarchy process (AHP) and multi-criteria decision analysis (MCDA) approach. Renewable Energy, vol. 220, 2024, 119595. https://doi.org/10.1016/j.renene.2023.119595.
  • Meng S., Yuanxu Z., Jinwei S., Zhixin H., Zhuxiao S.: A decision framework for tidal current power plant site selection based on GIS-MCDM: A case study in China. Energy, vol. 262(part B), 2023, 125476. https://doi.org/10.1016/j.energy.2022.125476.
  • Almasad A., Pavlak G., Alquthami T., Kumara S.: Site suitability analysis for implementing solar PV power plants using GIS and fuzzy MCDM based approach. Solar Energy, vol. 249, 2023, pp. 642–650. https://doi.org/10.1016/j.solener.2022.11.046.
  • Asadi M., Pourhossein K., Noorollahi Y., Marzband M., Iglesias G.: A new decision framework for hybrid solar and wind power plant site selection using linear regression modeling based on GIS-AHP. Sustainability, vol. 15(10), 2023, 8359. https://doi.org/10.3390/su15108359.
  • Şahin G., Koç A., van Sark W.: Multi-criteria decision making for solar power – Wind power plant site selection using a GIS-intuitionistic fuzzy-based approach with an application in the Netherlands. Energy Strategy Reviews, vol. 51, 2024, 101307. https://doi.org/10.1016/j.esr.2024.101307.
  • Vosgerau H., Mathiesen A., Sparre Andersen M., Boldreel L., Hjuler M., Kamla E., Kristensen L., Brogaard Pedersen C., Pjetursson B., Nielsen L.: A WebGIS portal for exploration of deep geothermal energy based on geological and geophysical data. Geological Survey of Denmark and Greenland Bulletin, vol. 35, 2016, pp. 23–26. https://doi.org/10.34194/geusb.v35.4633.
  • Maffeis G., Roncolato D., Cherubini A., Bernardoni A., Boccardi S., Greco A., Chiesa A., Brolis M., Fasano M.: BIOPOLE: WebGIS-based Decision Support System (DSS) in bio-energy plant localization. [in:] Seppelt R., Voinov A.A., Lange S., Bankamp D. (eds.), Managing Resources of a Limited Planet. Pathways and Visions under Uncertainty: 6th International Congress on Environmental Modelling and Software (iEMSs), 1 – 5 July 2012, Leipzig, Germany, International Environmental Modelling and Software Society (iEMSs), Leipzig 2012. https://scholarsarchive.byu.edu/iemssconference/2012/Stream-B/278/ [access: 21.03.2024].
  • Pasanisi F., Righini G., D’Isidoro M., Vitali L., Briganti G., Grauso S., Moretti L., Tebano C., Zanini G., Mahahabisa M., Letamai M., Raliselo, Seitlheko M.: A cooperation project in Lesotho: Renewable energy potential maps embedded in a WebGIS tool. Sustainability, vol. 13(18), 2021, 10132. https://doi.org/10.3390/su131810132.
  • Raffler C.: QNEAT3: QGIS Network Analysis Toolbox. https://root676.github.io/ [access: 21.03.2024].
  • Goraj R., Kiciński M., Ślefarski R., Duczkowska A.: Validity of decision criteria for selecting power-to-gas projects in Poland. Utilities Policy, vol. 83, 2023, 101619. https://doi.org/10.1016/j.jup.2023.101619.
  • Ozturk M., Dincer I.: A comprehensive review on power-to-gas with hydrogen options for cleaner applications. International Journal of Hydrogen Energy, vol. 46(62), 2021, pp. 31511–31522. https://doi.org/10.1016/j.ijhydene.2021.07.066.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7f264f4-950d-41fd-ab4e-024e174dfb1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.