PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation and analysis of torque generation mechanism of reverse salient permanent magnet synchronous machine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the torque generation mechanism of the reverse salient permanent magnet synchronous machine (RSPMSM) is investigated. The magnetic equivalent circuit (MEC) and the equivalent reluctance of different magnetic circuits are used to determine the air-gap magnetic density without slotting. By incorporating the influence of the slotted Carter factor, a model for the air-gap magnetic density at no-load is deduced and compared to finite element analysis results. The strong agreement observed between the analytical method and finite element analysis validates the precision of the proposed methodology. Moreover, the Maxwell stress method is employed to analyze and demonstrate the generation mechanism of electromagnetic torque. The contributions of the fundamental wave and each order harmonic to the torque components and their proportions are determined. This analysis provides valuable insights into the generation process of torque in the machine. Additional prototype experiments were conducted to verify the validity of the theoretical analysis and finite element simulations. The experimental results further confirm the accuracy and validity of the proposed methodologies.
Rocznik
Strony
713--735
Opis fizyczny
Bibliogr. 35 poz., fot., rys., tab., wykr., wz.
Twórcy
autor
  • School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, No. 1958, Kejia Road, Ganzhou, People’s Republic of China
autor
  • School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, No. 1958, Kejia Road, Ganzhou, People’s Republic of China
autor
  • School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, No. 1958, Kejia Road, Ganzhou, People’s Republic of China
autor
  • School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, No. 1958, Kejia Road, Ganzhou, People’s Republic of China
Bibliografia
  • [1] Wei F., Zhu Z., Qu H., Yan L., Qi J., New dual-PM spoke-type flux-reversal machines for direct-drive applications, IEEE Transactions on Industry Applications, vol. 58, no. 5, pp. 6190–6202 (2022), DOI: 10.1109/TIA.2022.3190248.
  • [2] Zhang L., Han S., Zhu X., Quan L., Chen W., Research on five-phase flux-intensifying permanent magnet motor drive system based on new active sensorless strategy, IEEE Transactions on Transportation Electrification, vol. 9, no. 3, pp. 4266–4277 (2023), DOI: 10.1109/TTE.2023.3241089.
  • [3] Wei F., Zhu Z., Yan L., Qi J., Investigation of stator/rotor pole number combinations and PM numbers in consequent-pole hybrid excited flux reversal machine, IEEE Transactions on Energy Conversion, vol. 37, no. 3, pp. 2092–2106 (2022), DOI: 10.1109/TEC.2022.3163654.
  • [4] Liu X., Liu D., Zhu S., Liang J., Investigation of an intensifying-flux variable flux-leakage interior permanent magnet machine for wide speed range, CES Transactions on Electrical Machines and Systems, vol. 6, no. 2, pp. 207–215 (2022), DOI: 10.30941/CESTEMS.2022.00028.
  • [5] Cao L., Zuo Y., Xie S., Hoang C., Han B., Lee C., Comparative study of permanent-magnet vernier motor and interior permanent-magnet motor for hybrid electric vehicles, IEEE Transactions on Industry Applications, vol. 59, no. 6, pp. 6601–6614 (2023), DOI: 10.1109/TIA.2023.3292813.
  • [6] Mao J., Huang J., Xu X., Zheng J., Zhang X., Design and analysis of interior permanent magnet motor with magnetic isolation and heat dissipation integrated auxiliary slot, IEEE Access, vol. 11, pp. 93004–93011(2023), DOI: 10.1109/ACCESS.2023.3309421.
  • [7] Lim D., Yi K., Woo D., Yeo H., Ro J., Lee C., Analysis and design of a multi-layered and multi-segmented interior permanent magnet motor by using an analytic method, IEEE Transactions on Magnetics, vol. 50, no. 6, pp. 1–8 (2014), DOI: 10.1109/TMAG.2013.2296568.
  • [8] An Y., Ma C., Zhang N., Guo Y., Degano M., Gerada C., Open-circuit air-gap magnetic field calculation of interior permanent magnet synchronous motor with V-shaped segmented skewed poles using hybrid analytical method, IEEE Transactions on Magnetics, vol. 57, no. 12, pp. 1–9 (2021), DOI: 10.1109/TMAG.2021.3118222.
  • [9] Ma C., Zhang J., Wang J., Yang N., Liu Q., Zuo S., Analytical model of open-circuit air-gap field distribution in interior permanent magnet machines based on magnetic equivalent circuit method and boundary conditions of macroscopic equations, IEEE Transactions on Magnetics, vol. 57, no. 3, pp. 1–9 (2021), DOI: 10.1109/TMAG.2021.3051498.
  • [10] Qu R., Lipo T., Analysis and modeling of air-gap and zigzag leakage fluxes in a surface-mounted permanent-magnet machine, IEEE Transactions on Industry Applications, vol. 40, no. 1, pp. 121–127 (2004), DOI: 10.1109/TIA.2003.821790.
  • [11] Xu L., Zhang C., Zhu X., Lin M., Zheng S., Indirect analytical modeling and analysis of V-shaped interior PM synchronous machine, IEEE Access, vol. 7, pp. 173786–173795 (2019), DOI: 10.1109/ACCESS.2019.2956764.
  • [12] Zhu Z., Howe D., Bolte E., Ackermann B., Instantaneous magnetic field distribution in brushless permanent magnet DC motors. I. Open-circuit field, IEEE Transactions on Magnetics, vol. 29, no. 1, pp. 124–135 (1993), DOI: 10.1109/20.195557.
  • [13] Dianati B., Hahn I., Nonlinear modeling of MGSPMs based on hybrid subdomain and magnetic equivalent circuitry, IEEE Transactions on Magnetics, vol. 58, no. 1, pp. 1–10 (2022), DOI: 10.1109/TMAG.2021.3128739.
  • [14] Li Z., Huang X., Chen Z., Wu L., Shen Y., Shi T., Electromagnetic analysis for interior permanentmagnet machine using hybrid subdomain model, IEEE Transactions on Energy Conversion, vol. 37, no. 2, pp. 1223–1232 (2022), DOI: 10.1109/TEC.2021.3112813.
  • [15] Ladghem Chikouche B., Boughrara K., Dubas F., Two-dimensional hybrid model for magnetic field calculation in electrical machines: exact subdomain technique and magnetic equivalent circuit, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 40, no. 3, pp. 535–560 (2021), DOI: 10.1108/COMPEL-01-2021-0008.
  • [16] Ullah W., Khan F., Sulaiman E., Sami I., Ro J., Analytical sub-domain model for magnetic field computation in segmented permanent magnet switched flux consequent pole machine, IEEE Access, vol. 9, pp. 3774–3783 (2021), DOI: 10.1109/ACCESS.2020.3047742.
  • [17] Lee S., Kim C., Choo Y., Yun G., Lee C., Torque analysis of a permanent magnet synchronous motor using flux densities in air gap, AIP Advances, vol. 13, no. 2, 025313 (2023), DOI: 10.1063/9.0000566.
  • [18] Li Y., Zhou Q., Ding S., Li W., Hang J., Investigation of air-gap field modulation effect in spoke-type PM machines, IEEE Transactions on Transportation Electrification, vol. 9, no. 1, pp. 845–855 (2023), DOI: 10.1109/TTE.2022.3202042.
  • [19] Li Y., Zhou Q., Ding S., Li W., Hang J., Design and evaluation of reduced-rare-earth interior consequent-pole permanent magnet machines for automotive applications, IEEE Transactions on Industry Applications, vol. 59, no. 2, pp. 1372–1382 (2023), DOI: 10.1109/TIA.2022.3184665.
  • [20] McFarland J., Jahns T., EL-Refaie A., Analysis of the torque production mechanism for flux-switching permanent-magnet machines, IEEE Transactions on Industry Applications, vol. 51, no. 4, pp. 3041–3049 (2015), DOI: 10.1109/TIA.2015.2411655.
  • [21] Guo F., Chu Q., Li C., Torque analysis and stator windings influence research on negative-salient permanent magnet synchronous motor, 2022 2nd International Joint Conference on Energy and Environmental Engineering, vol. 9, no. 2, pp. 416–424 (2023), DOI: org/10.1016/j.egyr.2023.03.015.
  • [22] Zhu X., Huang J., Quan L., Xiang Z., Shi B., Comprehensive sensitivity analysis and multiobjective optimization research of permanent magnet flux-intensifying motors, IEEE Transactions on Industrial Electronics, vol. 66, no. 4, pp. 2613–2627 (2019), DOI: 10.1109/TIE.2018.2849961.
  • [23] Bianchi N., Bolognani S., Chalmers B.J., Salient-rotor PM synchronous motors for an extended flux-weakening operation range, IEEE Trans. Ind., vol. 36, no. 4, pp. 1118–1125 (2000), DOI: 10.1109/28.855968.
  • [24] Wang T., Zhu X., Zheng S., Quan L., Xiang Z., Zhou X., Investigation on Torque Characteristic and PM Operation Point of Flux-Intensifying PM Motor Considering Low-Speed Operation, IEEE Transactions on Magnetics, vol. 57, no. 2, pp. 1–5 (2023), DOI: 10.1109/TMAG.2020.3019299.
  • [25] Zhu X., Wu W., Yang S., Xiang Z., Quan L., Comparative design and analysis of new type of fluxintensifying interior permanent magnet motors with different q-axis rotor flux barriers, IEEE Transactions on Energy Conversion, vol. 33, no. 4, pp. 2260–2269 (2018), DOI: 10.1109/TEC.2018.2837119.
  • [26] Zhu X., Yang S., Du Y., Xiang Z., Xu L., Electromagnetic performance analysis and verification of a new flux-intensifying permanent magnet brushless Motor with two-layer segmented permanent magnets, EEE Transactions on Magnetics, vol. 52, no. 7, pp. 1–4 (2016), DOI: 10.1109/TMAG.2016.2519465.
  • [27] Wu W., Chen Q., Zhu X., Design and analysis of a new permeability-modulated interior permanent magnet synchronous machine, IEEE Transactions on Magnetics, vol. 57, no. 2, pp. 1–5 (2021), DOI: 10.1109/TMAG.2020.3015784.
  • [28] Liu X., Zhu S., Liu D., Liang J., Design and analysis of wide speed regulation of variable leakage flux reverse salient-pole motor, CES Transactions on Electrical Machines and Systems, vol. 7, no. 3, pp. 284–293 (2023), DOI: 10.30941/CESTEMS.2023.00031.
  • [29] Liu X., Liu D., Zhu S., Investigation of an intensifying-flux variable flux-leakage interior permanent magnet machine for wide speed range, CES Transactions on Electrical Machines and Systems, vol. 6, no. 2, pp. 207–215 (2022), DOI: 10.30941/CESTEMS.2022.00028.
  • [30] Qiu H., Zhang S., Rotor optimization of axial-radial flux type synchronous machine based on magnetic flux leakage, Archives of Electrical Engineering, vol. 70, no. 3, pp. 551–566 (2021), DOI: 10.24425/aee.2021.137573.
  • [31] Xu H., Kamada H., Nomura S., A simple calculation method for center magnetic flux density of a magnetic core electromagnet with a wide air gap, IEEE Transactions on Applied Superconductivity, vol. 32, no. 6, pp. 1–6 (2022), DOI: 10.1109/TASC.2022.3158350.
  • [32] Abdelkefi A., Souissi A., Abdhennader I., Analytical investigation of flux switching PM machines: air gap flux density formulation, 2022 Second International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART), pp. 23–25 (2022), DOI: 10.1109/SMART55236.2022.9990436.
  • [33] Seo J., Choi H., Cogging torque calculation for IPM having single layer based on magnetic circuit model, IEEE Transactions on Magnetics, vol. 50, no. 10, pp. 1–4 (2014), DOI: 10.1109/TMAG.2014.2327204.
  • [34] Zhu W., Pekarek S., Fahimi B., Deken B., Investigation of force generation in a permanent magnet synchronous machine, IEEE Transactions on Energy Conversion, vol. 22, no. 3, pp. 557–565 (2007), DOI: 10.1109/TEC.2006.888034.
  • [35] Shi Z., Rajanathan C., A new method to improve the accuracy of Maxwell stress based force calculation in computational electromagnetic fields, 1996 Third International Conference on Computation in Electromagnetics, pp. 241–246 (1996), DOI: 10.1049/cp:19960192.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7f1e09b-64d6-407e-8a27-5b51e274b3a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.