PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High Structural Stability and Adsorption Capacity of Zn/Al-Biochar and Cu/Al-Biochar Toward Adsorption of Cr(VI)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Layered double hydroxide (LDH) Zn/Al and Cu/Al was synthesized by using the coprecipitation method under base condition at pH 10 following with formation of composites based on biochar (BC) to form Zn/Al-BC and Cu/ Al-BC. The materials were characterized by XRD, FTIR, BET, and thermal analyses. Furthermore, materials was applied as adsorbent of Cr(VI) on aqueous solution. The performance of composites as adsorbent was evaluated by reusability of adsorbent toward Cr(VI) adsorption process. The results showed that Cu/Al-BC and Zn/Al-BC can reuse the re-adsorption process with the adsorption ability of more than 60%. The adsorption capacity of Cu/ Al-BC and Zn/Al-BC was higher than that of starting materials and up to 384.615 mg/g for Cu/Al-BC and 666.667 mg/g for Zn/Al-BC. Both composites showed the potential adsorbents to remove Cr(VI) from aqueous solution.
Słowa kluczowe
Rocznik
Strony
213--223
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
  • Graduate School, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang-Prabumulih, Km. 32, Ogan Ilir, South Sumatera, Indonesia
  • Department of Environmental Engineering, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, Way Hui, Kecamatan Jati Agung, Lampung Selatan 35365, Indonesia
  • Research Center of Inorganic Materials and Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl.Padang Selasa Bukit Besar Palembang 30139, South Sumatera, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Padang Selasa No. 524 Ilir Barat 1, Palembang-South Sumatera, Indonesia
autor
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Padang Selasa No. 524 Ilir Barat 1, Palembang-South Sumatera, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Padang Selasa No. 524 Ilir Barat 1, Palembang-South Sumatera, Indonesia
autor
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Padang Selasa No. 524 Ilir Barat 1, Palembang-South Sumatera, Indonesia
  • Graduate School, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang-Prabumulih, Km. 32, Ogan Ilir, South Sumatera, Indonesia
  • Graduate School, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang-Prabumulih, Km. 32, Ogan Ilir, South Sumatera, Indonesia
  • Research Center of Inorganic Materials and Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl.Padang Selasa Bukit Besar Palembang 30139, South Sumatera, Indonesia
Bibliografia
  • 1. Abo El-Reesh, G.Y., Farghali, A.A., Taha, M. and Mahmoud, R.K. 2020. Novel synthesis of Ni/Fe layered double hydroxides using urea and glycerol and their enhanced adsorption behavior for Cr(VI) removal. Scientific Reports, 10(1), 1–20.
  • 2. Ali, I., Asim, M. and Khan, T.A. 2012. Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management, 113, 170–183.
  • 3. Altun, T. and Kar, Y. 2016. Removal of Cr(VI) from aqueous solution by pyrolytic charcoals. Xinxing Tan Cailiao/New Carbon Materials, 31, (5), 501–509.
  • 4. Amen, R., Yaseen, M., Mukhtar, A., Klemeš, J.J., Saqib, S., Ullah, S., Al-Sehemi, A.G., Rafiq, S., Babar, M., Fatt, C.L., Ibrahim, M., Asif, S., Qureshi, K.S., Akbar, M.M. and Bokhari, A. 2020. Lead and cadmium removal from wastewater using eco-friendly biochar adsorbent derived from rice husk, wheat straw, and corncob. Cleaner Engineering and Technology, 100006.
  • 5. Begum, T., Hoq, M.I., Mahmud, J., Pramanaik, M.K., Kamal, M.A.H.M., Islam, M.N. and Khan, R.A. 2019. Biodegradation of Hexavalent Chromium from Paint Industry Effluent by Indigenous Bacteria. The Journal of Social Sciences Research, 52, 45–52.
  • 6. de Bittencourt, M.A., Novack, A.M., Scherer Filho, J.A., Mazur, L.P., Marinho, B.A., da Silva, A., de Souza, A.A.U. and de Souza, S.M.A.G.U. 2020. Application of FeCl3 and TiO2-coated algae as innovative biophotocatalysts for Cr(VI) removal from aqueous solution: A process intensification strategy. Journal of Cleaner Production, 268(6), 122164.
  • 7. Bouteraa, S., Boukraa, F., Saiah, D., Hamouda, S. and Bettahar, N. 2020. Zn-M-CO3 Layered Double Hydroxides (M = Fe, Cr, or Al ): Synthesis, Characterization, and Removal of Aqueous Indigo Carmine. 15(1), 43–54.
  • 8. Castro-Castro, J.D., Macías-Quiroga, I.F., Giraldo-Gómez, G.I. and Sanabria-González, N.R. 2020. Adsorption of Cr(VI) in Aqueous Solution Using a Surfactant-Modified Bentonite. Scientific World Journal, 17.
  • 9. Chen, S., Huang, Y., Han, X., Wu, Z., Lai, C., Wang, J., Deng, Q., Zeng, Z. and Deng, S. 2018. Simultaneous and efficient removal of Cr(VI) and methyl orange on LDHs decorated porous carbons. Chemical Engineering Journal, 352(VI), 306–315.
  • 10. Cocheci, L., Barvinschi, P., Pode, R., Seftel, E.M. and Popovici, E. 2010. Chromium(VI) ion removal from aqueous solutions using a Zn-Al-type layered double hydroxide. Adsorption Science and Technology, 28(3), 267–279.
  • 11. Ebelegi, A.N., Ayawei, N. and Wankasi, D. 2020. Interpretation of Adsorption Thermodynamics and Kinetics. Open Journal of Physical Chemistry, 10(3), 166–182.
  • 12. Forghani, M., Azizi, A., Livani, M.J. and Kafshgari, L.A. 2020. Adsorption of lead(II) and chromium(VI) from aqueous environment onto metal-organic framework MIL-100(Fe): Synthesis, kinetics, equilibrium and thermodynamics. Journal of Solid State Chemistry, 291, 121636.
  • 13. Gao, J., Zhang, X., Yu, J., Lei, Y., Zhao, S., Jiang, Y., Xu, Z. and Cheng, J. 2020. Cr(VI) removal performance and the characteristics of microbial communities influenced by the core-shell maifanite/ZnAllayered double hydroxides (LDHs) substrates for chromium-containing surface water. Biochemical Engineering Journal, 160, 107625.
  • 14. Gao, C., Zhang, X., Yuan, Y., Lei, Y., Gao, J., Zhao, S., He, C. and Deng, L. 2018. Removal of hexavalent chromium ions by core-shell sand/Mg-layer double hydroxides (LDHs) in constructed rapid infiltration system. Ecotoxicology and Environmental Safety, 166, 285–293.
  • 15. Gasemloo, S., Khosravi, M., Sohrabi, M.R., Dastmalchi, S. and Gharbani, P. 2019. Response surface methodology (RSM) modeling to improve removal of Cr (VI) ions from tannery wastewater using sulfated carboxymethyl cellulose nanofilter. Journal of Cleaner Production, 208(6), 736–742.
  • 16. Golder, A.K., Chanda, A.K., Samanta, A.N. and Ray, S. 2007. Removal of Cr(VI) from aqueous solution: Electrocoagulation vs chemical coagulation. Separation Science and Technology, 42(10), 2177–2193.
  • 17. Gupta, A. and Balomajumder, C. 2016. Simultaneous adsorption of Cr(VI) and phenol from binary mixture using iron incorporated rice husk: Insight to multicomponent equilibrium isotherm. International Journal of Chemical Engineering, 6, 1-11.
  • 18. Hosseinkhani, A., Forouzesh Rad, B. and Baghdadi, M. 2020. Efficient removal of hexavalent chromium from electroplating wastewater using polypyrrole coated on cellulose sulfate fibers. Journal of Environmental Management, 274, 111153.
  • 19. Hu, Z., Cai, L., Liang, J., Guo, X., Li, W. and Huang, Z. 2019. Green synthesis of expanded graphite/layered double hydroxides nanocomposites and their application in adsorption removal of Cr(VI) from aqueous solution. Journal of Cleaner Production, 209(6), 1216–1227.
  • 20. Huang, D., Liu, C., Zhang, C., Deng, R., Wang, R., Xue, W., Luo, H., Zeng, G., Zhang, Q. and Guo, X. 2019. Cr(VI) removal from aqueous solution using biochar modified with Mg/Al-layered double hydroxide intercalated with ethylenediaminetetraacetic acid. Bioresource Technology, 276, 127–132.
  • 21. Itankar, N. and Patil, Y. 2014. Management of Hexavalent Chromium from Industrial Waste Using Low-cost Waste Biomass. Procedia Social and Behavioral Sciences, 133, 219–224.
  • 22. Jang, H.M., Yoo, S., Choi, Y.K., Park, S. and Kan, E. 2018. Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar. Bioresource Technology, 259, 24–31.
  • 23. Kahlon, S.K., Sharma, G., Julka, J.M., Kumar, A., Sharma, S. and Stadler, F.J. 2018. Impact of heavy metals and nanoparticles on aquatic biota. Environmental Chemistry Letters, 16(3), 919–946.
  • 24. Kaur, J., Kaur, M., Ubhi, M.K., Kaur, N. and Greneche, J.M. 2021. Composition optimization of activated carbon-iron oxide nanocomposite for effective removal of Cr(VI)ions. Materials Chemistry and Physics, 258, 124002.
  • 25. Kaykhaii, M., Sasani, M. and Marghzari, S. 2018. Removal of Dyes from the Environment by Adsorption Process. Chemical and Materials Engineering, 6(2), 31–35.
  • 26. Lei, C., Zhu, X., Zhu, B., Jiang, C., Le, Y. and Yu, J. 2017. Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions. Elsevier B.V., 801–811.
  • 27. Li, L., Cao, G. and Zhu, R. 2020. Adsorption of Cr(VI) from aqueous solution by a litchi shell-based adsorbent. Environmental Research, VI, 110356.
  • 28. Ling, F., Fang, L., Lu, Y., Gao, J., Wu, F., Zhou, M. and Hu, B. 2016. A novel CoFe layered double hydroxides adsorbent: High adsorption amount for methyl orange dye and fast removal of Cr(VI). Microporous and Mesoporous Materials, 234(VI), 230–238.
  • 29. Lv, X., Qin, X., Wang, K., Peng, Y., Wang, P. and Jiang, G. 2019. Nanoscale zero valent iron supported on MgAl-LDH-decorated reduced graphene oxide: Enhanced performance in Cr(VI) removal, mechanism and regeneration. Journal of Hazardous Materials, 373, 176–186.
  • 30. Magri, V.R., Duarte, A., Perotti, G.F. and Constantino, V.R.L. 2019. Investigation of thermal behavior of layered double hydroxides intercalated with carboxymethylcellulose aiming bio-carbon based nanocomposites. ChemEngineering, 3(2), 1–17.
  • 31. Mandal, S., Tripathy, S., Padhi, T., Sahu, M.K. and Patel, R.K. 2013. Removal efficiency of fluoride by novel Mg-Cr-Cl layered double hydroxide by batch process from water. Journal of Environmental Sciences (China), 25, (5), 993–1000.
  • 32. Marques, B.S., Dalmagro, K., Moreira, K.S., Oliveira, M.L.S., Jahn, S.L., de Lima Burgo, T.A. and Dotto, G.L. 2020. Ca–Al, Ni–Al and Zn–Al LDH powders as efficient materials to treat synthetic effluents containing o-nitrophenol. Journal of Alloys and Compounds, 838.
  • 33. Miguel, G.S., Lambert, S.D. and Graham, N.J. 2008. Wastewater treatment forproductionofH2S-free biogas. Journal of Chemical Technology & Biotechnology, 83, 1163–1169.
  • 34. Mir, Z.M., Bastos, A., Höche, D. and Zheludkevich, M.L. 2020. Recent advances on the application of layered double hydroxides in concrete-A review. Materials, 13(6), 1–23.
  • 35. Mohamed, E., Kamal, E., Doha, B., Samira, S. and Abdessalem, T. 2019. Adsorption thermodynamics and isosteric heat of adsorption of Thymol onto sodic, pillared and organic bentonite. Mediterranean Journal of Chemistry, 8(6), 494–504.
  • 36. Moller, M. and Pich, A. Development of Modified Layered Silicates with Superior Adsorption Properties for Uptake of Pollutants from Air and Water.
  • 37. Naggar, Y.I., Khalil, M.S. and Ghorab, M.A. 2018. Environmental Pollution by Heavy Metals in the Aquatic Ecosystems of Egypt. Open Access Journal of Toxicology, 3(1).
  • 38. Oktriyanti, M., Palapa, N.R., Mohadi, R. and Lesbani, A. 2019. Modification Of Zn-Cr Layered Double Hydroxide With Keggin Ion as Cr(VI) Adsorbent. Indonesian Journal of Environmental Management and Sustainability, 3(3), 93–99.
  • 39. Otgonjargal, E., Nyamsuren, B., Surenjav, E., Burmaa, G., Temuujin, J. and Dashkhuu, K. 2017. Removal of Chromium from Aqueous Solution by Thermally Treated Mgal Layered Double Hydroxide. Annals of Civil and Environmental Engineering, 1(1), 1–8.
  • 40. Palapa, N.R., Juleanti, N., Normah, N., Taher, T. and Lesbani, A. 2020a. Unique Adsorption Properties of Malachite Green on Interlayer Space of Cu-Al and Cu-Al-SiW 12 O 40 Layered Double Hydroxides. Bulletin of Chemical Reaction Engineering & Catalysis. 15(3), 653–661.
  • 41. Palapa, N.R., Saria, Y., Taher, T., Mohadi, R. and Lesbani, A. 2019. Synthesis and Characterization of Zn/Al, Zn/Fe, and Zn/Cr Layered Double Hydroxides: Effect of M3+ ions Toward Layer Formation. Science and Technology Indonesia, 4(2), 36–39.
  • 42. Palapa, N.R., Taher, T., Rahayu, B.R., Mohadi, R., Rachmat, A. and Lesbani, A. 2020b. CuAl LDH/ Rice Husk Biochar Composite for Enhanced Adsorptive Removal of Cationic Dye from Aqueous Solution. Bulletin of Chemical Reaction Engineering & Catalysis, 15(2), 525–537.
  • 43. Qhubu, M.C., Mgidlana, L.G., Madikizela, L.M. and Pakade, V.E. 2021. Preparation , characterization and application of activated clay biochar composite for removal of Cr ( VI ) in water : Isotherms , kinetics and thermodynamics. Materials Chemistry and Physics, 260, 124165.
  • 44. Rahman, Z. 2020. An overview on heavy metal resistant microorganisms for simultaneous treatment of multiple chemical pollutants at co-contaminated sites, and their multipurpose application. Journal of Hazardous Materials, 396, 122682.
  • 45. Saha, R., Nandi, R. and Saha, B. 2011. Sources and toxicity of hexavalent chromium. Journal of Coordination Chemistry, 64(10), 1782–1806.
  • 46. Selvi, K., Pattabhi, S. and Kadirvelu, K. 2001. Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon. Bioresource Technology, 80(1), 87–89.
  • 47. Semeraro, P., Fini, P., D’Addabbo, M., Rizzi, V. and Cosma, P. 2017. Removal from wastewater and recycling of azo textile dyes by alginate-chitosan beads. International Journal of Environment, Agriculture and Biotechnology, 2(4), 1835–1850.
  • 48. Shan, R. ran, Yan, L. guo, Yang, Y. ming, Yang, K., Yu, S. jun, Yu, H. qin, Zhu, B. cun and Du, B. 2015. Highly efficient removal of three red dyes by adsorption onto Mg-Al-layered double hydroxide. Journal of Industrial and Engineering Chemistry, 21, 561–568.
  • 49. Silaen, L., Palapa, N.R., Juleanti, N., Mohadi, R. and Lesbani, A. 2020. Efficient Adsorption of Cadmium ( II ) on Zn/M3+ (M3+ = Al, Cr). ARPN Journal, 15(18), 1967–1975.
  • 50. Sivamani, S. and Leena, G.B. 2009. Removal of Dyes from Wastewater using Adsorption A Review. International Journal of BioSciences and Technology, 2(4), 47–51.
  • 51. Sun, D., Zhang, Z., Wang, M. and Wu, Y. 2013. Adsorption of Reactive Dyes on Activated Carbon Developed from Enteromorpha prolifera American Journal of Analytical Chemistry, 4(7), 17–26.
  • 52. Taher, T., Rohendi, D., Mohadi, R. and Lesbani, A. 2019. Congo red dye removal from aqueous solution by acid-activated bentonite from sarolangun: kinetic, equilibrium, and thermodynamic studies. Arab Journal of Basic and Applied Sciences, 26(1), 125–136.
  • 53. Vieira, F.R., Romero Luna, C.M., Arce, G.L.A.F. and Ávila, I. 2020. Optimization of slow pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk. Biomass and Bioenergy, 132.
  • 54. Wang, X., Liu, X., Xiao, C., Zhao, H., Zhang, M., Zheng, N., Kong, W., Zhang, L., Yuan, H., Zhang, L. and Lu, J. 2020. Triethylenetetramine-modified hollow Fe3O4/SiO2/chitosan magnetic nanocomposites for removal of Cr(VI) ions with high adsorption capacity and rapid rate. Microporous and Mesoporous Materials, 297, 110041.
  • 55. Wu, Y., Guan, C.Y., Griswold, N., Hou, L. yuan, Fang, X., Hu, A., Hu, Z. qiang and Yu, C.P. 2020. Zero-valent iron-based technologies for removal of heavy metal(loid)s and organic pollutants from the aquatic environment: Recent advances and perspectives. Journal of Cleaner Production, 277, 123478.
  • 56. Yang, Y., Li, J., Yan, T., Zhu, R., Yan, L. and Pei, Z. 2020. Adsorption and photocatalytic reduction of aqueous Cr(VI) by Fe3O4-ZnAl-layered double hydroxide/TiO2 composites. Elsevier Inc., 493–501.
  • 57. Zhang, S., Lü, T., Mu, Y., Zheng, J. and Meng, C. 2020. High adsorption of Cd (II) by modification of synthetic zeolites Y, A and mordenite with thiourea. Chinese Journal of Chemical Engineering, (II).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7eedfa4-8c01-477c-8e2a-b90cabbba01f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.