PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Occurrence of Integrase Genes in Different Stages of Wastewater Treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The uncontrolled use of antibiotics and the release of drug residuals into the environment contribute to antibiotic resistance and constitute a serious public health threat. The spread of antibiotic resistance can be attributed mainly to the huge amounts of bacteria harboring the antibiotic resistance genes (ARGs) which are released into the environment with the treated wastewater. The molecular mechanisms of antibiotic resistance, in which the mobile genetic elements (MGEs) such as plasmids, transposons, bacteriophages and integrons associated with the transfer of ARGs play the main role, should be broadly investigated to develop effective methods for addressing this problem. This study focused mainly on integrons which: (i) are the simple elements involved in the mobility of gene cassettes, (ii) have a common structure, (iii) can be associated with other MGEs, and (iv) are particularly efficient in trapping ARGs. The aim of the study was to estimate the efficiency of different stages of the wastewater treatment process in removing class 1, 2 and 3 integrase genes in two wastewater treatment plants (WWTPs) in Poland and to investigate the presence of these genes in river water upstream and downstream from the effluent discharge point. The presence of intI1, intI2 and intI3 genes was analysed by means of standard PCR with specific primers and a thermal cycling profiles. The samples of wastewater and sludge were collected from two WWTPs located in the Polish regions of (a) Warmia and Mazury, and (b) Silesia. The samples of river water were also collected upstream and downstream from the examined WWTPs. In the selected WWTPs, wastewater is treated through the activated sludge process with various modifications. The presence of intI1, intI2 and intI3 genes in different stages of wastewater treatment was characterized by a similar pattern. The results of this study indicate that WWTPs are not highly effective in removing the integrase genes from all three integron classes. The study revealed somewhat unexpected results, which indicate that the recently discontinued monitoring of the intI3 gene in the wastewater treatment process should be reinstated. The existing wastewater treatment systems should be improved and modified to effectively eliminate the integrase genes from wastewater and prevent contamination of the surface water.
Słowa kluczowe
Rocznik
Strony
39--45
Opis fizyczny
Bibliogr. 32 poz., tab.
Twórcy
autor
  • Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury, Prawocheńskiego 1, 10-720 Olsztyn, Poland
autor
  • Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury, Prawocheńskiego 1, 10-720 Olsztyn, Poland
  • Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury, Prawocheńskiego 1, 10-720 Olsztyn, Poland
  • Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury, Prawocheńskiego 1, 10-720 Olsztyn, Poland
  • Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury, Prawocheńskiego 1, 10-720 Olsztyn, Poland
  • Department of Environmental Microbiology, Institute for Ecology of Industrial Areas, Kossutha 6, 40-844 Katowice, Poland
  • Department of Environmental Microbiology, Institute for Ecology of Industrial Areas, Kossutha 6, 40-844 Katowice, Poland
Bibliografia
  • 1. Barlow R.S., Gobius K.S. 2006. Diverse class 2 integrons in bacteria from beef cattle sources. Journal of Antimicrobial Chemotherapy 58(6), 1133–1138.
  • 2. Beceiro A., Tomás M., Bou G. 2013. Antimicrobial Resistance and virulence: a successful or deleterious association in the bacterial world. Clin Microbiol Rev. 26(2), 185–230.
  • 3. Ben W., Wang J., Cao R., Yang M., Zhang Y., Qiang Z. 2017. Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes. Chemosphere 172, 392–398.
  • 4. Berglund B., Ghazanfar A.K., Weisner S.E.B., Ehde P.M., Fick J., Lindgren P.E. 2014. Efficient removal of antibiotics in surface-flow constructed wetlands, with no observed impact on antibiotic resistance genes. Science of the Total Environment 476, 29–37.
  • 5. Calhau V., Mendes C., Pena A., Mendonça N., Da Silva G.J. 2015. Virulence and plasmidic resistance determinants of Escherichia coli isolated from municipal and hospital wastewater treatment plants. J Water Health. 13(2), 311–318
  • 6. Deng Y., Bao X., Ji L., Chen L., Liu Y., Miao J., Chen D., Bian H., Li Y., Yu G. 2015. Resistance integrons: class 1, 2 and 3 integrons. Annals of Clinical Microbiology and Antimicrobials 14(1), 45.
  • 7. Dillon B., Thomas L., Mohmand G., Zelynski A., Iredell J. 2005. Multiplex PCR for screening of integrons in bacterial lysates. Journal of Microbiological Methods 62(2), 221–232.
  • 8. Du J., Geng J., Ren H., Ding L., Xu K., Zhang Y. 2015. Variation of antibiotic resistance genes in municipal wastewater treatment plant with A 2 OMBR system. Environmental Science and Pollution Research 22(5), 3715–3726.
  • 9. Gatica J, Tripathi V., Green S., Manaia C.M., Berendonk T., Cacace D., Merlin C.,Kreuzinger N., Schwartz T., Fatta-Kassinos D., Rizzo L., Schwermer C.U., Garelick H., Jurkevitch, Cytryn E. 2016. High throughput analysis of integron gene cassettes in wastewater environments. Environmental Science & Technology 50(21), 11825–11836.
  • 10. Giebułtowicz J., Tyski S., Wolinowska R., Grzybowska W., Zaręba T., Drobniewska A., Wroczyński P., Nałęcz-Jawecki G. 2018. Occurrence of antimicrobial agents, drug-resistant bacteria, and genes in the sewage-impacted Vistula River (Poland). Environmental Science and Pollution Research 25(6), 5788–5807.
  • 11. Gillings M.R. 2014. Integrons: past, present, and future. Microbiology and Molecular Biology Reviews. 78(2), 257–277.
  • 12. Goldstein C., Lee M.D., Sanchez S., Chudson C., Phillips B., Register B.,Grady M., Libert C., Summers A.O., White D.G., Mauer J.J. 2001. Incidence of Class 1 and 2 Integrases in Clinical and Commensal Bacteria from Livestock, Companion Animals, and Exotics. Antimicrob Agents Ch. 45(3), 723–726.
  • 13. Karkman A., Do T.T., Walsh F., Virta M.P.J. 2018. Antibiotic-resistance genes in waste water. Trends in Microbiology 26(3): 220–228.
  • 14. Kaushik M., Kumar S., Kapoor R.Kr., Gulati P. 2019. Integrons and antibiotic resistance genes in water-borne pathogens: threat detection and risk assessment. Journal of Medical Microbiology 68(5), 679–692.
  • 15. Koczura R., Mokracka J., Taraszewska A., Łopacinska N. 2016. Abundance of class 1 integronintegrase and sulfonamide resistance genes in river water and sediment is affected by anthropogenic pressure and environmental factors. Microbial Ecology 72(4), 909–916.
  • 16. Korzeniewska E., Harnisz M. 2018. Relationship between modification of activated sludge wastewater treatment and changes in antibiotic resistance of bacteria. Science of the Total Environment 639, 304–315.
  • 17. Laroche E., Pawlak B., Berthe T., Skurnik D., Petit F. 2009 Occurrence of antibiotic resistance and class 1, 2 and 3 integrons in Escherichia coli isolated from a densely populated estuary (Seine, France). FEMS microbiology ecology 68(1), 118–130.
  • 18. Lekunberri I., Balcázar J.I, Borrego C.M. Metagenomic exploration reveals a marked change in the river resistome and mobilome after treated wastewater discharges. Environmental Pollution 234: 538–542.
  • 19. Li J., Cheng W., Xu L., Strong P.J., Chen H. 2015. Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system. Environmental Science and Pollution Research 22(6), 4587–4596.
  • 20. Makowska N., Koczura R., Mokracka J. 2016. Class 1 integrase, sulfonamide and tetracycline resistance genes in wastewater treatment plant and surface water. Chemosphere 144, 1665–1673.
  • 21. Moura A., Henriques I., Smalla K., Correia A. 2010. Wastewater bacterial communities bring together broad-host range plasmids, integrons and a wide diversity of uncharacterized gene cassettes. Research in Microbiology 161(1), 58–66.
  • 22. Munir M., Wong K., Xagoraraki I. 2011. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Research 45(2), 681–693.
  • 23. Narciso-da-Rocha C., Manaia C.M. 2017. The influence of the autochthonous wastewater microbiota and gene host on the fate of invasive antibiotic resistance genes. Science of the Total Environment 575, 932–940.
  • 24. Osińska A., Korzeniewska E., Harnisz M., Niestępski S. 2017a. The prevalence and characterization of antibiotic-resistant and virulent Escherichia coli strains in the municipal wastewater system and their environmental fate. Science of the Total Environment. 577, 367–375.
  • 25. Osińska A., Korzeniewska E., Harnisz M., Niestępski S. 2017b. Impact of type of wastewater treatment process on the antibiotic resistance of bacterial populations. In E3S Web of Conferences (Vol. 17, p. 00070). EDP Sciences.
  • 26. Paiva M.C., Ávila M.P., Reis M.P., Costa P.S., Nardi R.M.D., Nascimento A.M.A. 2015. The microbiota and abundance of the class 1 integron-integrase gene in tropical sewage treatment plant influent and activated sludge. PloS one 10(6), e0131532.
  • 27. Pruden A., Larsson D.J., Amézquita A., Collignon P., Brandt K.K., Graham D.W., Lazorcha J.M., Suzuki S., Silley P., Snape J.R., Topp E. 2013. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environmental Health Perspectives, 121(8), 878–885.
  • 28. Rizzo L., Manaia C., Merlin C., Schwartz T., Dagot C., Ploy M.C., Michael I., Fatta-Kassinos D. 2013. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Science of the Total Environment 447, 345–360.
  • 29. Stalder T., Barraud O., Jové T., Casellas M., Gaschet M., Dagot C., Ploy M.C. 2014 Quantitative and qualitative impact of hospital effluent on dissemination of the integron pool. The ISME journal 8(4), 768.
  • 30. Subirats J., Xisca T., Sànchez-Melsió A., Balcázar J.A., Acuña V., Sabater S., Borrego C.M. 2018. Emerging contaminants and nutrients synergistically affect the spread of class 1 integron-integrase (intI1) and sul1 genes within stable streambed bacterial communities. Water Research 138, 77–85.
  • 31. Uyaguari M.I., Scott G.I., Norman R.S. 2013. Abundance of class 1–3 integrons in South Carolina estuarine ecosystems under high and low levels of anthropogenic influence. Marine Pollution Bulletin 76(1–2), 77–84.
  • 32. Xu Z., Li L., Shi L., Shirtliff M.E. 2011. Class 1 integron in staphylococci. Molecular Biology Reports 38(8), 5261–5279.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7e50254-f5a4-4bfd-8189-5b27ec5fff63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.