PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temperature and frequency dependent Preisach model

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Rozszerzenie modelu Preisacha uwzględniające wpływ temperatury i częstotliwości
Języki publikacji
EN
Abstrakty
EN
The present paper deals with a frequency and temperature dependent modeling approach for hysteresis loops of ferromagnetic materials. The model is based on the Preisach model. The frequency dependency is taken into account by the statistical loss theorem, while thermal effects were incorporated by a generalization of the model equation. The model was validated against measurements made on a soft magnetic material. The results of the proposed model were in good agreement with measured data.
PL
W artykule zaprezentowano modelowanie pętli histerezy materiałów ferromagnetycznych uwzględniające wpływ temperatury i częstotliwości a bazujące na modelu Preisacha.Wpływ częstotliwości uwzględniał teorię strat.
Rocznik
Strony
5--8
Opis fizyczny
Bibliogr. 19 poz., fot., rys., wykr.
Twórcy
autor
  • Department of Automation, Faculty of Mechanical Engineering, Informatics and Electrical Engineering, Széchenyi István University, Egyetem tér 1, H9026, Győr , Hungary
Bibliografia
  • [1] Ladjimi A., Mékideche M. R.: Modeling of Thermal Effects on Magnetic Hysteresis using the Jiles-Atherton Model, Przeglad Elektrotechniczny, 88(4a), pp. 253–256, 2012.
  • [2] Cardelli A.: Modelling of Ferromagnetic Hysteresis in Soft Magnetic Materials, Przeglad Elektrotechniczny, 10, pp. 693 701, 2003. Fig. 12. Loss components at 420_C
  • [3] Walecki K., Zakrzewski K.: The Total Iron Loss Determination in the Ferromagnetic Elements of the Electromagnetic Speed and Torque Converter Including the Magnetization Type, Przeglad Elektrotechniczny, 07a, pp. no. 201, 2012.
  • [4] Pluta W.: Calculating power loss in electrical steel taking into account magnetic anisotropy, Przeglad Elektrotechniczny, 02, pp. no. 100, 2018.
  • [5] Pardavi-Horvath M., Vertesy G.: Temperature Dependence of Switching Properties of a 2-D Array of Preisach-Type Particles, IEEE Trans. on Magnetics, 31(6), pp. 2910–2912, 1995.
  • [6] Adly A. A., Mayergoyz I. D.: Simulation of Field-Temperature Effects in Magnetic Media Using Anisotropic Preisach Models, IEEE Trans. on Magnetics, 34(4), pp. 1264–1266, 1998.
  • [7] Nakmahachalasint P., Khai D. T., Loc V-Q.: Thermal Behavior of a Dynamic Domain-Wall Motion Model for Hysteresis in Power Ferrite, IEEE Trans. on Magnetics, 41(1), pp. 140–143, 2005.
  • [8] Lu H. Y., Zhu J. G., Ron-Hui S. Y.: Measurement and Modeling of Thermal Effects on Magnetic Hysteresis of Soft Ferrites, IEEE Trans. on Magnetics, 43(11), pp. 3952–3960, 2007.
  • [9] Raghunathan A., Melikhov Y., Snyder J. E., Jiles D. C.: Modeling the Temperature Dependence of Hysteresis Based on Jiles–Atherton Theory, IEEE Trans. on Magnetics, 45(10), pp. 3954–3957, 2009.
  • [10] Takahashi N., Morishita M., Miyagi D., Nakano N.: Examination of Magnetic Properties of Magnetic Materials at High Temperature Using a Ring Specimen, IEEE Trans. on Magnetics, 46(2), pp. 548–551, 2010
  • [11] Raghunathan A., Melikhov Y., Snyder J. E., Jiles D. C.: Theoretica Model of Tempearure Dependence of Hysteresis Based on Mean Field Theory, IEEE Trans. on Magnetics, 46(6), pp. 1507–1510, 2010.
  • [12] Hilal A., Raulet M. A., Martin C.: Magnetic Components Dynamic Modeling with Thermal Coupling for Circuit Simulators, IEEE Trans. on Magnetics, 50(4), 7026604, 2014.
  • [13] Kuczmann M.: Fourier Transform and Controlling of Flux in Scalar Hysteresis Measurement, Physica B, 403(2-3), pp. 410- 413, 2008.
  • [14] Kis P., Kuczmann M., Füzi J., Iványi A.: Hysteresis Measurement in LabVIEW, Physica B, 343(1-4), pp. 357-363 2004.
  • [15] Iványi A.: Hysteresis Models in Electromagnetic Computation, Academic Press, Budapest, 2017.
  • [16] Zirka S. E., Moroz Y. I., Moses A. J., Arturi C. M.: Static and Dynamic Hysteresis Models for Studying Transformer Transients, IEEE Trans. on Power Delivery, 26(4), pp. 2352- 2362, 2011.
  • [17] Zirka S. E., Moroz Y. I., Moses A. J., Arturi C. M.: Viscous- Type Dynamic Hysteresis Model as a Tool for Loss Separation in Conducting Ferromagnetic Laminations, IEEE Trans. on Magnetics, 41(3), pp. 1109-1111, 2005.
  • [18] Dlala E.: Comparison of models for estimating magnetic core losses in electrical machines using the finite element method, IEEE Trans. on Magnetics, 45(2), pp. 716-725, 2009.
  • [19] Dlala E., Belahcen A., Arkkio A.: Magnetodynamic vector hysteresis model of ferromagnetic steel laminations, Physica B, 403, pp. 428-432, 2008.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7e1c86d-7bef-4c43-855a-e750ae3c6747
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.