PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exploring the effect of sodium hexametaphosphate in coal slime flotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the influence of sodium hexametaphosphate (SHMP) in coal slime flotation was studied, and the interaction between SHMP and coal slime flotation particles was revealed through XRD test, contact angle measurement, zeta potential test, scanning electron microscopy analysis, XPS analysis, and DLVO theoretical calculation. The experimental results show that when the dosage of SHMP is 1500 g/t, the recovery rate of clean coal combustibles increases by 9.61 %. SHMP reduces the hydrophobicity of clay minerals (kaolinite) in coal slime flotation and also enhances the dispersibility of coal slime particle. Scanning electron microscopy and energy dispersive analysis showed that SHMP reduced the number of clay particles (kaolinite) on the coal surface, thereby reducing the ash content of the clean coal. In this paper, SHMP is mainly used to modify the surface of kaolinite so as to reduce the hydrophobicity of the mineral, that is, to improve the recovery rate of clean coal combustibles in coal slime flotation.
Słowa kluczowe
Rocznik
Strony
art. no. 162075
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
  • College of Mining, Guizhou University, Guiyang 550025, Guizhou, China
  • College of Mining, Guizhou University, Guiyang 550025, Guizhou, China
  • National &Local Joint Laboratory of Engineering for Efficient Utilization of Regional Mineral Resources from Karst Areas, Guiyang 550025, Guizhou, China
  • Guizhou Key Laboratory of Comprehensive Utilization of Non-metallic Mineral Resources, Guiyang 550025, Guizhou, China
autor
  • College of Mining, Guizhou University, Guiyang 550025, Guizhou, China
  • National &Local Joint Laboratory of Engineering for Efficient Utilization of Regional Mineral Resources from Karst Areas, Guiyang 550025, Guizhou, China
  • Guizhou Key Laboratory of Comprehensive Utilization of Non-metallic Mineral Resources, Guiyang 550025, Guizhou, China
autor
  • College of Mining, Guizhou University, Guiyang 550025, Guizhou, China
Bibliografia
  • EGOROV, R.I., STRIZHAK, P.A. The light-induced gasification of waste-derived fuel. Fuel 2017, 197, 28–30.
  • GLUSHKOV, D., PAUSHKINA, K., SHABARDIN, D., STRIZHAK, P. Environmental aspects of converting municipal solid waste into energy as part of composite fuels. J. Clean. Prod. 2018, 201, 1029–1042.
  • VERSHININA, K.Y., LAPIN, D.A., LYRSCHIKOV, S.Y., SHEVYREV, S.A. Ignition of coal-water fuels made of coal processing wastes and different oils. Appl. Therm. Eng. 2018, 128, 235–243.
  • MENG, Z., YANG, Z., YIN, Z., LI, Y., JU, X., YAO, Y. Interaction between dispersant and coal slime added in semi-coke water slurry: An experimental and DFT study. Appl. Surf. Sci. 2021, 540, 148327.
  • CHEN, J., SUN, Y., LIU, L., GE, W., SHEN, L., MIN, F. Interactions between Mg2+-doped kaolinite and coal: Insights from DFT calculation and flotation. Appl. Surf. Sci. 2022, 600, 154071.
  • SAHINOGLU, E. Cleaning of high pyritic sulfur fine coal via flotation. Adv. Powder Technol. 2018, 29, 1703–1712.
  • YU, Y., CHENG, G., MA, L., HUANG, G., WU, L., XU, H. Effect of agitation on the interaction of coal and kaolinite in flotation. Powder Technol. 2017, 313, 122–128.
  • YU, Y., LI, A., XU, Z., ZHOU, A., LI, Z., ZHANG, N., QU, J., ZHU, X., LIU, Q. New insights into the slime coating caused by montmorillonite in the flotation of coal. J. Clean. Prod. 2020, 242, 118540.
  • ZHAO, B., HU, S., ZHAO, X., ZHOU, B., LI, J., HUANG, W., CHEN, G., WU, C., LIU, K. The application of machine learning models based on particles characteristics during coal slime flotation. Adv. Powder Technol. 2022, 33, 103363.
  • LI, M., XIA, Y., ZHANG, Y., DING, S., RONG, G., CAO, Y., XING, Y., GUI, X. Mechanism of shale oil as an effective collector for oxidized coal flotation: From bubble–particle attachment and detachment point of view. Fuel 2019, 255, 115885.
  • BAI, H., LIU, Y., ZHAO, Y., CHEN, T., LI, H., CHEN, L., SONG, S. Regulation of coal flotation by the cations in the presence of clay. Fuel 2020, 271, 117590.
  • WANG, L., PENG, Y., RUNGE, K., BRADSHAW, D. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Miner. Eng. 2015, 70, 77–91.
  • FORBES, E., DAVEY, K.J., SMITH, L. Decoupling rehology and slime coatings effect on the natural flotability of chalcopyrite in a clay-rich flotation pulp. Miner. Eng. 2014, 56, 136–144.
  • LIU, J., EJTEMAEI, M., NGUYEN, A.V., WEN, S., ZENG, Y. Surface chemistry of Pb-activated sphalerite. Miner. Eng. 2020, 145, 106058.
  • NDLOVU, B., FARROKHPAY, S., BRADSHAW, D. The effect of phyllosilicate minerals on mineral processing industry. Int. J. Miner. Processing 2013, 125, 149–156.
  • LIU, D., PENG, Y. Understanding different roles of lignosulfonate in dispersing clay minerals in coal flotation using deionised water and saline water. Fuel 2015, 142, 235–242.
  • ZHAO, B. Experimental study on ash reduction by inhibitor during flotation. Clean Coal Technol. 2014, 20, 36–38.
  • LI, Y., XIA, W., PAN, L., TIAN, F., PENG, Y., XIE, G., LI, Y. Flotation of low-rank coal using sodium oleate and sodium hexametaphosphate. J. Clean. Prod. 2020, 261, 121216.
  • ZHANG, G.F., FENG, Q.M., LU, Y.P., LIU, G.Y., OU, L.M. Effect of sodium hexametaphosphate on flotation of bauxite. J. Cent. South Univ. Technol. (Nat. Sci.) 2001, 32, 127–130.
  • LIANG, L., TAN, J., LI, B., XIE, G. Reducing quartz entrainment in fine coal flotation by polyaluminum chloride. Fuel 2019, 235, 150–157.
  • WANG, L.Y., QIANG, M.L., XIAN, Y.Y. Application and Mechanism Study of Sodium Hexametaphosphate in Coal Flotation. Coal Technology, 2014.
  • CHOI, I.K., WEN, W.W., SMITH, R.W. The effect of a long chain phosphate on the adsorption of collectors on kaolinite. Miner. Eng. 1993, 6, 1191–1197.
  • RAMIREZ, A., ROJAS, A., GUTIERREZ, L., LASKOWSKI, J.S. Sodium hexametaphosphate and sodium silicate as dispersants to reduce the negative effect of kaolinite on the flotation of chalcopyrite in seawater. Miner. Eng. 2018, 125, 10–14.
  • WANG, Y., LI, Y., XIA, W., PENG, Y., XIE, G. Adsorption of sodium oleate on coal surface with different oxidation degrees and its effect on flotation. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 611, 125801.
  • GUI, X., XING, Y., RONG, G., CAO, Y., LIU, J. Interaction forces between coal and kaolinite particles measured by atomic force microscopy. Powder Technol. 2016, 301, 349–355.
  • LIU, C., ZHANG, W., SONG, S., LI, H. Effects of lizardite on pentlandite flotation at different pH: Implications for the role of particle-particle interaction. Miner. Eng. 2019, 132, 8–13.
  • OATS, W.J., OZDEMIR, O., NGUYEN, A.V. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation. Miner. Eng. 2010, 23, 413–419.
  • YOON, R.H. The role of hydrodynamic and surface forces in bubble–particle interaction. Int. J. Miner. Processing 2000, 58, 129–143.
  • HU, P., LIANG, L., LI, B., XIA, W. Heterocoagulation between coal and quartz particles studied by the mineral heterocoagulation quantifying system. Miner. Eng. 2019, 138, 7–13.
  • XU, Z., YOON, R. The role of hydrophobia interactions in coagulation. J. Colloid Interface Sci. 1989, 132, 532–541.
  • HAO, H., LI, L., YUAN, Z., LIU, J. pH-controlled dispersion of micro-fine siderite from hematite and quartz. Powder Technol. 2018, 339, 710–716.
  • BREMMELL, K.E., FORNASIERO, D., RALSTON, J. Pentlandite–lizardite interactions and implications for their separation by flotation. Colloids Surf. A: Physicochem. Eng. Asp. 2005, 252, 207–212.
  • JIANG, S.Y., ZHANG, K., PEI, J.Y., LIU, J.T. Inhibition mechanism and application of Sodium Hexametaphosphate to coal slime. China Coal 2012, 38, 83–85.
  • ZHEN, K., ZHANG, H., LI, C., LI, X. Effect of oxidized diesel oil on the flotation response of the low-rank coal by plasma oxidation method. Fuel 2019, 245, 13–20.
  • YANG, L., ZHU, Z., LI, D., YAN, X., ZHANG, H. Effects of particle size on the flotation behavior of coal fly ash. Waste Manag. 2019, 85, 490–497.
  • ZHAO, X., MENG, Q., YUAN, Z., ZHANG, Y., LI, L. Effect of sodium silicate on the magnetic separation of ilmenite from titanaugite by magnetite selective coating. Powder Technol. 2019, 344, 233–241.
  • FEN-RONG, L., WEN, L., HUI-QING, G., BAO-QING, L., ZONG-QING, B., RUI-SHENG, H. XPS study on the change of carbon-containing groups and sulfur transformation on coal surface. J. Fuel Chem. Technol. 2011, 39, 81–84.
  • WANG, B., PENG, Y., VINK, S. Diagnosis of the Surface Chemistry Effects on Fine Coal Flotation Using Saline Water. Energy Fuels 2013, 27, 4869–4874.
  • NIU, C., XIA, W., XIE, G. Effect of low-temperature pyrolysis on surface properties of sub-bituminous coal sample and its relationship to flotation response. Fuel 2017, 208, 469–475.
  • TANG, J.C., DUTTON, J.J., PIEC, I., GREEN, D., FISHER, E., WASHBOURNE, C.J., FRASER, W.D. LC–MS/MS application for urine free pyridinoline and free deoxypyridinoline: Urine markers of collagen and bone degradation. Clin. Mass Spectrom. 2016, 1, 11–18.
Uwagi
The authors acknowledge financial supports from the Cultivation project of Guizhou University (No.[2020]13) and National Natural Science Foundation of China (51864010 ).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7e19ea5-cf7f-4e37-9635-826b58c9b51a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.