PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Study on the Wilkins and Forchheimer Equations used in Coarse Granular Media Flow

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Complexity of the pore geometry and the random nature of flow velocity make it difficult to predict and represent post laminar flow through porous media. Present study experimentally investigates the applicability of Forchheimer and Wilkins equations for post laminar flow where Darcy’s law is invalid due to predominant inertial effect. It is observed that both porosity and media size have significant influence over the coefficients of the Forchheimer coefficients. To incorporate the effect of porosity and media size, behaviour of Forchheimer coefficients are investigated with hydraulic radius as characteristic length. An inversely proportional variation trend is found for all the present and earlier reported data. A new empirical relation between Forchheimer coefficients and hydraulic radius is obtained which can be universally applicable for all media size and porosity. Coefficients of the Wilkins equation are found to be non-deviating for different hydraulic radius in the present study and in the reported literature validating its applicability in predicting the non laminar flow through porous media. Further the Wilkins equation is modified after incorporating the correction factors for better applicability on the field.
Czasopismo
Rocznik
Strony
81--91
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
  • Department of Civil Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
  • Department of Civil Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
autor
  • Department of Applied Mathematics, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
  • Department of Civil Engineering, SVU College of Engineering, Sri Venkateswara University, Tirupati, India
Bibliografia
  • 1. Ahmed N, Sunada DK (1969) Nonlinear flow in porous media. J Hydraul Div ASCE 95(6):1847–1858
  • 2. Bear J (1972) Dynamics of fluids in porous media. Elsevier, New York
  • 3. Bo-Ming Y, Jian-Hua L (2004) A geometry model for tortuosity of flow path in porous media. Chin Phys Lett 21(8):1569
  • 4. Bordier C, Zimmer D (2000) Drainage equations and non-Darcian modelling in coarse porous media or geosynthetic materials. J Hydrol 228(3):174–187
  • 5. Chapokpour J, Tokaldany EA, Sedghi-Asl M (2013) Estimation of friction coefficient in sediment contained flow through rockfill. Int J Eng Trans B 26(2):85–94
  • 6. Comiti J, Renaud M (1989) A new model for determining mean structure parameters of fixed beds from pressure drop measurements: application to beds packed with parallelepipedal particles. Chem Eng Sci 44(7):1539–1545
  • 7. Comiti J, Sabiri N, Montillet A (2000) Experimental characterization of flow regimes in various porous media-III: limit of Darcy’s or creeping flow regime for Newtonian and purely viscous non-Newtonian fluids. Chem Eng Sci 55:3057–3061
  • 8. Du Plessis P, Masliyah J (1988) Mathematical modelling of flow through consolidated isotropic porous media. Transp Porous Media 3(2):145–161
  • 9. Dudgeon CR (1968) Relationship between porosity and permeability of coarse granular materials. In: Third Australasian Conference on Hydraulics and Fluid Mechanics, Sydney, pp 76–80
  • 10. Dukhan N, Özer, Özdemir (2014) Experimental flow in various porous media and reconciliation of Forchheimer and Ergun relations. Exp Thermal Fluid Sci 57:425–433
  • 11. Eisfeld B, Schnitzlein K (2001) The influence of confining walls on the pressure drop in packed beds. Chem Eng Sci 56(14):4321–4329
  • 12. Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94
  • 13. Garga VK, Hansen D Townsend RD (1990) Considerations on the design of flowthrough rockfill drains. In: the Proceedings of the 14th Annual British Columbia Mine Reclamation Symposium, Cranbrook
  • 14. Hassanizadeh SM, Gray WG (1987) High velocity flow in porous media. Transp Porous Media 2(6):521–531
  • 15. Hellström GI, Lundström (2006) Flow through porous media at moderate Reynolds number. International Scientific Colloquium Modelling for Material Processing, Riga, pp 129–134
  • 16. Hill RJ, Koch DL (2002) The transition from steady to weakly turbulent flow in a close-packed ordered array of spheres. J Fluid Mech 465:59–97
  • 17. Huang K, Wan JW, Chen CX, He LQ, Mei WB, Zhang MY (2013) Experimental investigation on water flow in cubic arrays of spheres. J Hydrol 492:61–68
  • 18. Irmay S (1958) On the theoretical derivation of Darcy and Forchheimer formulas. Trans Am Geophys Union 39(4):702–707
  • 19. Koponen A, Kataja M, Timonen J (1996) Tortuous flow in porous media. Phys Rev E 54(1):406–410
  • 20. Kovacs G (1971) Seepage through saturated and unsaturated layers. Hydrol Sci J 16(2):27–40
  • 21. Kovacs G (1981) Seepage Hydraulics. ESPC, New York
  • 22. Kumar GNP, Venkataraman P (1995) Non-Darcy converging flow through coarse granular media. J Inst Eng (India) 76(5):6–11
  • 23. Kumar GNP, Thiruvengadam T, Murali M (2004) A further study on forchheimer coefficients as applied seepage flow. ISH J Hydraul Eng 10(2):1–13
  • 24. Li Z, Wan J, Huang K, Chang W, He Y (2017) Effects of particle diameter on flow characteristics in sand columns. Int J Heat Mass Transf 104:533–536
  • 25. Mehta D, Hawley MC (1969) Wall effect in packed columns. Ind Eng Chem Process Des Dev 8(2):280–282
  • 26. Niranjan HS (1973) Non-Darcy flow through porous media. Master of Technology Thesis, Indian Institute of Technology, India
  • 27. Pradeep Kumar GN (1994) Radial Non-Darcy flow through coarse granular media, unpublished PhD thesis, Sri Venkateswara University, Tirupati, India
  • 28. Reddy BNP, Rao RM (2006) Effect of convergence on nonlinear flow in porous media. J Hydraul Eng 132(4):420–427
  • 29. Reynolds A, Reavell S, Harral B (2000) Flow and dispersion through a close-packed fixed bed of spheres. Phys Rev E 62:3632
  • 30. Rose HE, Rizk AMA (1949) Further researches in fluid flow through beds of granular material. Proc Inst Mech Eng 160(1):493–511
  • 31. Scheidegger AE (1958) The physics of flow through porous media. Soil Sci 86(6):355
  • 32. Scheidegger AE (1960) The physics of flow through porous media. University of Toronto Press, Toronto
  • 33. Sedghi-Asl M, Rahimi H, Salehi R (2014) Non-Darcy flow of water through a packed column test. Transp Porous Media 101(2):215–227
  • 34. Srinivas P, Kumar GNP, Jayachndra K (2014) Quantification of effect of convergence in porous media flow. In: 5th International Conference on Porous Media and Their Applications in Science, Engineering and Industry, Hawaii, pp 1–6
  • 35. Subramanya K, Madav M (1978) Linear and Non-linear flow through porous media, submitted to central board of irrigation and power
  • 36. Thiruvengadam M (2010) Experimental investigation on flow through porous media with an emphasis on characteristic parameters, unpublished PhD thesis, Sri Venkateswara University,Tirupati, India
  • 37. Thiruvengadam M, Kumar GP (1997) Validity of Forchheimer equation in radial flow through coarse granular media. J Eng Mech 123:696–705
  • 38. Trykozko A, Peszynska M, Dohnalik M (2016) Modeling non-Darcy flows in realistic pore-scale proppant geometries. Comput Geotech 71:352–360
  • 39. Ward JC (1964) Turbulent flow in porous media. J Hydraul Div ASCE 90(5):1–12
  • 40. Wen Z, Huang G, Zhan H (2006) Non-Darcian flow in a single confined vertical fracture toward a well. J Hydrol 330(3):698–708
  • 41. Whitaker S (1996) The Forchheimer equation: a theoretical development. Transp Porous Media 25(1):27–61
  • 42. Wilkins JK (1955) Flow of water through rockfill and its application to the design of dams. NZ Eng 10(11):382–387
  • 43. Winterberg M, Tsotsas E (2000) Impact of tube to particle diameter ratio on pressure drop in packed beds. AIChE J 46(5):1084–1088
  • 44. Yamada H, Nakamura F, Watanabe Y, Murakami M, Nogami T (2005) Measuring hydraulic permeability in a streambed using the packer test. Hydrol Process 19(13):2507–2524
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7de3c64-07e7-43c0-b266-158506cbb600
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.