PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Biomechanical assessment of lumbar stability: finite element analysis of TLIF with a novel combination of coflex and pedicle screws

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Finite element analysis is frequently used for lumbar spine biomechanical analysis. The primary scope of this work is to illustrate, using finite element analysis, how the biomechanical behavior of the transforaminal lumbar interbody fusion (TLIF), along with a novel combination of the interspinous process device (IPD) and pedicle screws, improves lumbar spine stability. Methods: In this study, unilateral pedicle screw fixation (UPSF) and bilateral pedicle screw fixation (BPSF) were used. Four FE models were developed using ANSYS software, as follows: (1) Intact model; (2) TLIF with “U”-shaped Coflex-F IPD (UCF); (3) TLIF with Coflex-F and UPSF (UCF + UPSF); (4) TLIF with Coflex-F and BPSF (UCF + BPSF). The intact model was subjected to four pure moments (10 Nm), and the results were validated with previous literature data. The intact model results correlated well with the literature data, and the model was validated. Three surgical models were subjected to 7.5 Nm four pure moments, flexion (FL), extension (ET), lateral bending (LB), and axial rotation (AR) and a 280N follower load. Results: The surgical model results were compared with the intact model. The comprehensive analysis results show the UCF + BPSF surgical model gave a good advantage on range of motion, cage stress, Coflex-F stress and endplate stress compared among the two models. Conclusion: This study proposes that the UCF + BPSF system helps to reduce the stress on the implant and adjacent endplates and gives very good stability to the lumbar spine under the various static loading conditions.
Rocznik
Strony
133--143
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai – 603110, India
autor
  • Department of Mechanical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai – 603110, India
Bibliografia
  • [1] ARAÚJO Â.R.G., PEIXINHO N., PINHO A.C.M., CLARO J.C.P., Quasi-static and dynamic properties of the intervertebral disc: Experimental study and model parameter determination for the porcine lumbar motion segment, Acta Bioeng. Biomech., 2015, 17 (4), 59–66, DOI: 10.5277/ABB-00153-2014-04.
  • [2] BERKSON M.H., NACHEMSON A.L., NACHEMSON A., SCHULTZ A.B., SCHULTZ A.B., Mechanical Properties of Human Lumbar Spine Motion Segments. Part II: Responses in Compression and Shear; Influence of Gross Morphology, Journal of Biomechanical Engineering-Transactions of The Asme, 1979, DOI: 10.1115/1.3426225.
  • [3] Cai X yi., Sun M si., Huang Y peng., Liu Z xuan., Liu C jie., Du C fei., Yang Q., Biomechanical Effect of L4–L5 Intervertebral Disc Degeneration on the Lower Lumbar Spine: A Finite Element Study, Orthop. Surg., 2020, 12 (3), 917–930, DOI: 10.1111/os.12703.
  • [4] CALIŞAL E., UĞUR L., Evaluation of the plate location used in clavicle fractures during shoulder abduction and flexion movements: A finite element analysis, Acta Bioeng. Biomech., 2018, 20 (4), 41–46, DOI: 10.5277/ABB-01211-2018-03.
  • [5] CHEN S.H., LIN S.C., TSAI W.C., WANG C.W., CHAO S.H., Biomechanical comparison of unilateral and bilateral pedicle screws fixation for transforaminal lumbar interbody fusion after decompressive surgery – A finite element analysis, BMC Musculoskelet. Disord., 2012, 13, DOI: 10.1186/1471-2474-13-72.
  • [6] CHEN S.H., TAI C.L., LIN C.Y., HSIEH P.H., CHEN W.P., Biomechanical comparison of a new stand-alone anterior lumbar interbody fusion cage with established fixation techniques – A three-dimensional finite element analysis, BMC Musculoskelet. Disord., 2008, 9, DOI: 10.1186/1471-2474-9-88.
  • [7] CHEN S.-I., LIN R.-M., CHANG C.-H., Biomechanical investigation of pedicle screw–vertebrae complex: a finite element approach using bonded and contact interface conditions, Med. Eng. Phys., 2003, 25 (4), 275–282, DOI: https://doi.org/10.1016/ S1350-4533(02)00219-9.
  • [8] FAN W., 2018 LGPU-. A comparison of the influence of three different lumbar interbody fusion approaches on stress in the pedicle screw fixation system: finite element static and vibration analyses, Int. J. Numer. Method Biomed. Eng. n.d., DOI: https://doi.org/10.1002/cnm.3162.
  • [9] FAN W., 2019 LGPU-. Biomechanical comparison of the effects of anterior, posterior and transforaminal lumbar interbody fusion on vibration characteristics of the human lumbar spine, Comput. Methods Biomech. Biomed. Engin. n.d., DOI: https://doi.org/10.1080/10255842.2019.1566816.
  • [10] FAN W., 2020 LGPU-. The effect of non-fusion dynamic stabilization on biomechanical responses of the implanted lumbar spine during whole-body vibration, Comput. Methods Programs Biomed. n.d., DOI: https://doi.org/10.1016/j.cmpb. 2020.105441.
  • [11] FAN W., GUO L.-X., The Role of Posterior Screw Fixation in Single-Level Transforaminal Lumbar Interbody Fusion During Whole Body Vibration: A Finite Element Study, World Neurosurg., 2018, DOI: 10.1016/j.wneu.2018.03.150.
  • [12] FAN W., GUO L.X., 2021 MZPU-. Biomechanical analysis of lumbar interbody fusion supplemented with various posterior stabilization systems, European Spine Journal n.d., DOI: https://doi.org/10.1007/s00586-021-06856-7.
  • [13] FAN Y., ZHOU S., XIE T., YU Z., HAN X., ZHU L., Topping-off surgery vs posterior lumbar interbody fusion for degenera- 142 S. MEGANATHAN, M.S. ALPHIN tive lumbar disease: A finite element analysis, J. Orthop. Surg. Res., 2019, 14 (1), DOI: 10.1186/s13018-019-1503-4.
  • [14] GEORGE S.P., VENKATESH K., SARAVANA K.G., Development, calibration and validation of a comprehensive customizable lumbar spine FE model for simulating fusion constructs, Med. Eng. Phys., 2023, 118, 104016, DOI: https://doi.org/ 10.1016/j.medengphy.2023.104016.
  • [15] GUO L.X., LI R., ZHANG M., Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method, Acta Bioeng. Biomech., 2016, 18 (2), 19–29, DOI: 10.5277/ABB-00406- 2015-02.
  • [16] GUO T.-M., LU J., XING Y.-L., LIU G.-X., ZHU H.-Y., YANG L., QIAO X.-M., A 3-Dimensional Finite Element Analysis of Adjacent Segment Disk Degeneration Induced by Transforaminal Lumbar Interbody Fusion After Pedicle Screw Fixation, World Neurosurg., 2019, 124, e51–7, DOI: 10.1016/ j.wneu.2018.11.195.
  • [17] ITO K., ITO Z., NAKAMURA S., ITO F., SHIBAYAMA M., MIURA Y., Minimization of lumbar interbody fusion by percutaneous full-endoscopic lumbar interbody fusion (PELIF), and its minimally invasiveness comparison with minimally invasive surgery-transforaminal lumbar interbody fusion (MIS-TLIF), Interdisciplinary Neurosurgery, 2023, 34, 101794, DOI: 10.1016/ j.inat.2023.101794.
  • [18] JARAMILLO H.E., GARCIA J.J., Elastic constants influence on the L4-L5-S1 annuli fibrosus behavior, a probabilistic finite element analysis, Acta of Bioengineering and Biomechanics, Original Paper, 2017, 19 (4), DOI: 10.5277/ABB-00949-2017-02.
  • [19] KIM D.H., HWANG R.W., LEE G.-H., JOSHI R., BAKER K.C., ARNOLD P., SASSO R., PARK D., FISCHGRUND J., Comparing rates of early pedicle screw loosening in posterolateral lumbar fusion with and without transforaminal lumbar interbody fusion, The Spine Journal, 2020, 20 (9), 1438–1445, DOI: 10.1016/j.spinee.2020.04.021.
  • [20] LEE N., SHIN D.A., KIM K.N., YOON D.H., HA Y., SHIN H.C., YI S., Paradoxical Radiographic Changes of Coflex Interspinous Device with Minimum 2-Year Follow-Up in Lumbar Spinal Stenosis, World Neurosurg., 2016, 85, 177–184, DOI: https://doi.org/10.1016/j.wneu.2015.08.069.
  • [21] LIU Z., ZHANG S., LI J., 2022 HTPU-. Biomechanical comparison of different interspinous process devices in the treatment of lumbar spinal stenosis: a finite element analysis, BMC Musculoskelet. Disord. n.d., DOI: https://doi.org/10.1186/ s12891-022-05543-y.
  • [22] LO C.-C., LO C.C., TSAI K.J., TSAI K.-J., ZHONG Z.-C., CHEN S.-H., CHEN S.H., HUNG C., Biomechanical differences of Coflex-F and pedicle screw fixation combined with TLIF or ALIF – a finite element study, Comput. Methods Biomech. Biomed. Engin., 2011, DOI: 10.1080/10255842.2010.501762.
  • [23] LO H.J., CHEN H.M., KUO Y.J., YANG S.W., Effect of different designs of interspinous process devices on the instrumented and adjacent levels after double-level lumbar decompression surgery: A finite element analysis, PLoS One, 2020, 15 (12), DOI: 10.1371/journal.pone.0244571.
  • [24] MA X., LIN L., WANG J., MENG L., ZHANG X., MIAO J., Oblique lateral interbody fusion combined with unilateral versus bilateral posterior fixation in patients with osteoporosis, J. Orthop. Surg. Res., 2023, 18 (1), 776, DOI: 10.1186/s13018- 023-04262-x.
  • [25] MIĘKISIAK G., ŁĄTKA D., JANUSZ W., URBAŃSKI W., ZAŁUSKI R., KUBASZEWSKI Ł., The change of volume of the lumbar vertebrae along with aging in asymptomatic population: A preliminary analysis, Acta Bioeng. Biomech., 2018, 20 (3), 25–30, DOI: 10.5277/ABB-01166-2018-01.
  • [26] MO Z., LI D., ZHANG R., CHANG M., YANG B., TANG S., Comparative effectiveness and safety of posterior lumbar interbody fusion, Coflex, Wallis, and X-stop for lumbar degenerative diseases: A systematic review and network metaanalysis, Clin. Neurol. Neurosurg., 2018, 172, 74–81, DOI: 10.1016/j.clineuro.2018.06.030.
  • [27] NAKHLI Z., HATIRA F.B., PITHIOUX M., CHABRAND P., SAANOUNI K., On prediction of the compressive strength and failure patterns of human vertebrae using a quasi-brittle continuum damage finite element model, Acta Bioeng. Biomech., 2019, 21 (2), 143–151, DOI: 10.5277/ABB-01265-2019-03.
  • [28] PARK W.M., LI G., CHA T., Development of a novel FE model for investigation of interactions of multi-motion segments of the lumbar spine, Med. Eng. Phys., 2023, 120, 104047, DOI: https://doi.org/10.1016/j.medengphy.2023.104047.
  • [29] PRADEEP K., PAL B., Effects of open and minimally invasive Transforaminal Lumbar Interbody Fusion (TLIF) surgical techniques on mechanical behaviour of fused L3-L4 FSU: A comparative finite element study, Med. Eng. Phys., 2024, 123, 104084, DOI: https://doi.org/10.1016/j.medengphy.2023. 104084.
  • [30] RANA M., ROY S., BISWAS P., BISWAS S.K., BISWAS J.K., Design and development of a novel expanding flexible rod device (FRD) for stability in the lumbar spine: A finiteelement study, Int. J. Artif. Organs, 2020, 43 (12), 803–810, DOI: 10.1177/0391398820917390.
  • [31] SALLEH N.S.M., MAZLAN M.H., ABDULLAH N.S., AHMAD I.L., ABDULLAH A.H., JALIL M.H.A., TAKANO H., NORDIN N.D.D., Design and analysis of infill density effects on interbody fusion cage construct based on finite element analysis, 1st National Biomedical Engineering Conference, NBEC 2021, Institute of Electrical and Electronics Engineers Inc., 2021, 25–29.
  • [32] SCHENCK C.D., TERPSTRA S.E.S., MOOJEN W.A., VAN ZWET E., PEUL W., ARTS M.P., VLEGGEERT-LANKAMP C.L.A., Interspinous process device versus conventional decompression for lumbar spinal stenosis: 5-year results of a randomized controlled trial, J. Neurosurg. Spine, 2022, 36 (6), 909–917, DOI: 10.3171/2021.8.SPINE21419.
  • [33] STOKES I.A.F., GARDNER-MORSE M., A database of lumbar spinal mechanical behavior for validation of spinal analytical models, J. Biomech., 2016, 49 (5), 780–785, DOI: 10.1016/ j.jbiomech.2016.01.035.
  • [34] TENG L., 2020 YLPU-. Interlaminar stabilization offers greater biomechanical advantage compared to interspinous stabilization after lumbar decompression: a finite element analysis, J. Orthop. Surg. Res. n.d., DOI: https://doi.org/10.1186/s13018-020- 01812-5.
  • [35] TEO E.C., NG H.W., Evaluation of the role of ligaments, facets and disc nucleus in lower cervical spine under compression and sagittal moments using finite element method, Med. Eng. Phys., 2001, 23 (3), 155–164, DOI: https://doi.org/ 10.1016/S1350-4533(01)00036-4.
  • [36] VADAPALLI S., SAIRYO K., GOEL V.K., ROBON M., BIYANI A., KHANDHA A., EBRAHEIM N.A., Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study, Spine, (Phila Pa 1976), 2006, 31 (26), E992-8, DOI: 10.1097/01.brs.0000250177. 84168.ba.
  • [37] WANG B., WANG B., WANG B., HUA W., KE W., LU S., LI X., ZENG X., YANG C., Biomechanical Evaluation of Transforaminal Lumbar Interbody Fusion and Oblique Lumbar Interbody Fusion on the Adjacent Segment: A Finite Element Analysis, World Neurosurg., 2019, DOI: 10.1016/j.wneu.2019.02.164.
  • [38] WONG C.E., HU H.T., KAO L.H., LIU C.J., CHEN K.C., HUANG K.Y., Biomechanical feasibility of semi-rigid stabilization and semi-rigid lumbar interbody fusion: a finite element study, BMC Musculoskelet. Disord., 2022, 23 (1), DOI: 10.1186/s12891-021-04958-3.
  • [39] XU M., YANG J., LIEBERMAN I.H., HADDAS R., Finite element method-based study of pedicle screw–bone connection in pullout test and physiological spinal loads, Med. Eng. Phys., 2019, 67, 11–21, DOI: 10.1016/j.medengphy.2019.03.004.
  • [40] YAN J., WU Z., WANG X., XING Z., SONG H., ZHAO Y., ZHANG J., WANG Y., QIU G., Finite element analysis on stress change of lumbar spine, Zhonghua Yi Xue Za Zhi 2009, 89 (17), 1162–1165.
  • [41] YANG M., SUN G., GUO S., ZENG C., YAN M., HAN Y., XIA D., ZHANG J., LI X., XIANG Y. et al., The Biomechanical Study of Extraforaminal Lumbar Interbody Fusion: A Three-Dimensional Finite-Element Analysis, J. Healthc. Eng., 2017, 2017, 9365068, DOI: 10.1155/2017/9365068.
  • [42] YANG S.C., LIU P.H., TU Y.K., Investigationof pullout strength in different designs of pedicle screws for osteoporotic bone quality usingfinite element analysis, Acta Bioeng. Biomech., 2019, 21 (3), DOI: 10.5277/ABB-01385-2019-03.
  • [43] YIN J.-Y., 2020 LGPU-. Biomechanical analysis of lumbar spine with interbody fusion surgery and U-shaped lumbar interspinous spacers, Comput. Methods Biomech. Biomed. Engin. n.d., DOI: https://doi.org/10.1080/10255842.2020.1851368.
  • [44] ZHAO Y., LI J., WANG D., LIU Y., TAN J., ZHANG S., Comparison of stability of two kinds of sacro-iliac screws in the fixation of bilateral sacral fractures in a finite element model, Injury, 2012, 43 (4), 490–494, DOI: 10.1016/j.injury.2011.12.023.
  • [45] ZHONG R., XUE X., WANG R., DAN J., WANG C., LIU D., Safety and efficacy of unilateral and bilateral pedicle screw fixation for lumbar degenerative diseases by transforaminal lumbar interbody fusion: An updated systematic review and meta-analysis, Front. Neurol., 2022, 13, DOI: 10.3389/fneur. 2022.998173.
  • [46] ZHONG Z.-C., WEI S.-H., WANG J.-P., FENG C.-K., CHEN C.-S., YU C., Finite element analysis of the lumbar spine with a new cage using a topology optimization method, Med. Eng. Phys., 2006, 28 (1), 90–98, DOI: https://doi.org/10.1016/j.medengphy. 2005.03.007.
  • [47] ZHU J., SHEN H., CUI Y., FOGEL G.R., LIAO Z., LIU W., Biomechanical Evaluation of Transforaminal Lumbar Interbody Fusion with Coflex¬F and Pedicle Screw Fixation: Finite Element Analysis of Static and Vibration Conditions, Orthop. Surg., 2022, DOI: 10.1111/os.13425.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7da8f63-2ae6-47a2-9d6d-78f1d6a4cf0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.