Identyfikatory
Warianty tytułu
Biomonitoring using spider webs - air quality and health exposure assessment
Języki publikacji
Abstrakty
Biomonitoring jakości powietrza z wykorzystaniem sieci pajęczych przeprowadzono we Wrocławiu w 2020 r. Po określonym czasie ekspozycji sieci przeanalizowano pod kątem zawartości pierwiastków potencjalnie toksycznych (Fe, Pb, Zn). Zważając na fakt, że otrzymane wartości były wyższe niż wartości w poprzednich latach, wykonano dodatkowo ocenę narażenia zdrowotnego, wynikającego z obecności pierwiastków potencjalnie toksycznych w powietrzu. W przypadku Fe oraz Pb całościowy wskaźnik zagrożenia był wysoki, wskazując na możliwe zagrożenie zdrowotne związane z narażeniem na te pierwiastki, natomiast wyniki dla Zn nie wskazały na istnienie takiego zagrożenia. Biomonitoring z wykorzystaniem sieci pajęczych udowodnił, że materiał ten może być z powodzeniem wykorzystywany przy oszacowaniu jakości powietrza, a analiza obecnych na sieciach pierwiastków pomaga przy ocenie zagrożenia zdrowotnego.
Air quality biomonitoring was conducted with the use of spider webs in Wrocław in 2020. After the specified exposure time, the webs were analyzed in order to determine the content of potentially toxic elements (Fe, Pb, Zn). Due to the fact that the obtained concentrations were higher than values recorded in previous years, an additional assessment of health hazard, resulting from the presence of potentially toxic elements in the air, was performed. In the case of Fe and Pb, the overall hazard index was found to be high, indicating the possible existence of a health hazard associated with exposure to these elements, while the results for Zn did not point to such a hazard. Biomonitoring with the use of spider webs has proven that this material can be successfully used in air quality assessment, and the analysis of the elements collected on the webs can help in assessing health hazard.
Wydawca
Rocznik
Tom
Strony
7--19
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
- Wydział Inżynierii Środowiska, Politechnika Wrocławska
autor
- Wydział Inżynierii Środowiska, Politechnika Wrocławska
Bibliografia
- 1. EEA, Air Quality in Europe – 2020 Report, 2020.
- 2. European Comission, Special Eurobarometer 468: Attitudes of European Citizens towards the Environment, 2017.
- 3. IARC, Outdoor Air Pollution a Leading Environmental Cause of Cancer Deaths, IARC Press Release, 2013.
- 4. Markert B., Definitions and Principles for Bioindication and Biomonitoring of Trace Metals in the Environment, “Journal of Trace Elements in Medicine and Biology” 2007, 21, p. 77–82, https://doi.org/10.1016/j.jtemb.2007.09.015.
- 5. Ciężka M.M., Górka M., Modelska M., Tyszka R., Samecka-Cymerman A., Lewińska A., Łubek A., Widory D., The Coupled Study of Metal Concentrations and Electron Paramagnetic Resonance (EPR) of Lichens (Hypogymnia Physodes) from the Świętokrzyski National Park – Environmental Implications, “Environmental Science and Pollution Research” 2018, 25, p. 25348–25362, https://doi.org/10.1007/s11356-018-2586-x.
- 6. Massimi L., Conti M.E., Mele G., Ristorini M., Astolfi M.L., Canepari S., Lichen Transplants as Indicators of Atmospheric Element Concentrations: A High Spatial Resolution Comparison with PM10 Samples in a Polluted Area (Central Italy), “Ecological Indicators” 2019, 101, p. 759–769, https://doi.org/10.1016/j.ecolind.2018.12.051.
- 7. Kosior G., Samecka-Cymerman A., Chmielewski A., Wierzchnicki R., Derda M., Kempers A.J., Native and Transplanted Pleurozium Schreberi (Brid.)Mitt. as a Bioindicator of N Deposition in a Heavily Industrialized Area of Upper Silesia (S Poland), “Atmospheric Environment” 2008, 42, s. 1310–1318, https://doi.org/10.1016/j.atmosenv.2007.10.086.
- 8. Stojanowska A., Górka M., Lewandowska A.U., Wiśniewska K., Modelska M., Widory D., Can Abies Alba Needles Be Used as Bio-Passive Samplers to Assess Air Quality?, “Aerosol and Air Quality Research” 2021, 21, p. 210097, https://doi.org/10.4209/ aaqr.210097.
- 9. Górka M., Bartz W., Skuridina A., Potysz A., Populus Nigra Italica Leaves as a Valuable Tool for Mineralogical and Geochemical Interpretation of Inorganic Atmospheric Aerosols’ Genesis, “Atmosphere” 2020, 11, p. 1126, https://doi.org/10.3390/atmos11101126.
- 10. Teper E., Dust-Particle Migration around Flotation Tailings Ponds: Pine Needles as Passive Samplers, “Environmental Monitoring and Assessment” 2009, 154, p. 383–391, https://doi.org/10.1007/s10661-008-0405-4.
- 11. Bartz W., Górka M., Rybak J., Rutkowski R., Stojanowska A., The Assessment of Effectiveness of SEM- EDX and ICP-MS Methods in the Process of Determining the Mineralogical and Geochemical Composition of Particulate Matter Deposited on Spider Webs, “Chemosphere” 2021, 278, p. 130454, https://doi.org/https://doi.org/10.1016/j. chemosphere.2021.130454.
- 12. Stojanowska A., Mach T., Olszowski T., Bihałowicz J.S., Górka M., Rybak J., Rajfur M., Świsłowski P., Air Pollution Research Based on Spider Web and Parallel Continuous Particulate Monitoring – A Comparison Study Coupled with Identification of Sources, “Minerals” 2021, 11, p. 812, https://doi.org/https://doi.org/10.3390/min11080812.
- 13. Hose G.C., James J.M., Gray M.R., Spider Webs as Environmental Indicators, “Environmental Pollution” 2002, 120, p. 725–733, https://doi.org/10.1016/S0269- 7491(02)00171-9.
- 14. van Laaten N., Merten D., von Tümpling W., Schäfer T., Pirrung M., Comparison of Spider Web and Moss Bag Biomonitoring to Detect Sources of Airborne Trace Elements, “Water, Air, & Soil Pollution” 2020, 231, p. 512, https://doi.org/10.1007/s11270-020- 04881-8.
- 15. Rybak J., Accumulation of Major and Trace Elements in Spider Webs, “Water, Air, & Soil Pollution” 2015, 226, p. 105, https://doi.org/10.1007/s11270-015-2369-7.
- 16. Rybak J., Rogula-Kozłowska W., Jureczko I., Rutkowski R., Monitoring of Indoor Polycyclic Aromatic Hydrocarbons Using Spider Webs, “Chemosphere” 2019, 218, p. 758–766, https://doi.org/10.1016/j.chemosphere.2018.11.174.
- 17. Rybak J., Olejniczak T., Accumulation of Polycyclic Aromatic Hydrocarbons (PAHs) on the Spider Webs in the Vicinity of Road Traffic Emissions, “Environmental Science and Pollution Research” 2014, 21, p. 2313–2324, https://doi.org/10.1007/s11356-013- 2092-0.
- 18. Rutkowski R., Bihałowicz J.S., Rachwał M., Rogula-Kozłowska W., Rybak J., Magnetic Susceptibility of Spider Webs and Dust: Preliminary Study in Wrocław, Poland, “Minerals” 2020, 10, p. 1018.
- 19. Rachwał M., Rybak J., Rogula-Kozłowska W., Magnetic Susceptibility of Spider Webs as a Proxy of Airborne Metal Pollution, “Environmental Pollution” 2018, 234, p. 543–551, https://doi.org/10.1016/j.envpol.2017.11.088.
- 20. Stojanowska A., Rybak J., Bożym M., Olszowski T., Bihałowicz J.S., Spider Webs and Lichens as Bioindicators of Heavy Metals: A Comparison Study in the Vicinity of a Copper Smelter (Poland), “Sustainability” 2020, 12, p. 8066, https://doi.org/10.3390/ su12198066.
- 21. Stojanowska A., Zeynalli F., Wróbel M., Rybak J., The Use of Spider Webs in the Monitoring of Air Quality – a Review, “Integrated Environmental Assessment Management” 2022.
- 22. GIOŚ, Pięcioletnia ocena jakości powietrza w strefie dolnośląskiej. Raport wojewódzki za lata 2016–2020, 2021.
- 23. Krzeszowiak J., Michalak A., Pawlas K., Zanieczyszczenie powietrza we Wrocławiu i potencjalne zagrożenie dla zdrowia z tym związane, „Medycyna Środowiskowa – Environmental Medicine” 2015, 18, s. 66–73.
- 24. GIOŚ, Roczna ocena jakości powietrza w województwie dolnośląskim, 2021.
- 25. IMGW, Raport z działalności IMGW-PIB w 2020 Roku, 2020.
- 26. Foelix R.F., Biology of Spiders, Oxford University Press, USA 2011, https://doi.org/10.1163/187631283X00371.
- 27. Gerboles M., Buzica D., Brown R.J.C., Yardley R.E., Hanus-Illnar A., Salfinger M., Vallant B., Adriaenssens E., Claeys N., Roekens E. et al., Interlaboratory Comparison Exercise for the Determination of As, Cd, Ni and Pb in PM10 in Europe, “Atmospheric Environment” 2011, 45, p. 3488–3499, https://doi.org/10.1016/j.atmosenv.2010.12.020.
- 28. US EPA, Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). Off. Superfund Remediat, “Technol. Innov. Environ. Prot. Agency” 2009, 1–68.
- 29. USEPA, Risk Assessment Guidance for Superfund (RAGS) Volume III – Part A: Process for Conducting Probabilistic Risk Assessment, Appendix B, 2001.
- 30. Linak W.P., Yoo J.I., Wasson S.J., Zhu W., Wendt J.O.L., Huggins F.E., Chen Y., Shah N., Huffman G.P., Ian Gilmour M., Ultrafine Ash Aerosols from Coal Combustion: Characterization and Health Effects, “Proceedings of the Combustion Institute” 2007, 31, p. 1929–1937, https://doi.org/10.1016/j.proci.2006.08.086.
- 31. Reinard M.S., Adou K., Martini J.M., Johnston M.V., Source Characterization and Identification by Real-Time Single Particle Mass Spectrometry, “Atmospheric Environment” 2007, 41, p. 9397–9409, https://doi.org/10.1016/j.atmosenv.2007.09.001.
- 32. Adachi K., Tainosho Y., Characterization of Heavy Metal Particles Embedded in Tire Dust, “Environment International” 2004, 30, p. 1009–1017, https://doi.org/10.1016/j. envint.2004.04.004.
- 33. Kukutschová J., Moravec P., Tomášek V., Matějka V., Smolík J., Schwarz J., Seidlerová J., Šafářová K., Filip P., On Airborne Nano/Micro-Sized Wear Particles Released from Low-Metallic Automotive Brakes, “Environmental Pollution” 2011, 159, p. 998–1006, https://doi.org/10.1016/j.envpol.2010.11.036.
- 34. Jung C.C., Chou C., Huang Y.T., Chang S.Y., Lee C.T., Lin C.Y., Cheung H.C., Kuo W.C., Chang C.W., Chang S.C., Isotopic Signatures and Source Apportionment of Pb in Ambient PM2.5, “Scientific Reports” 2022, 12, p. 4343.
- 35. Goix S., Resongles E., Point D., Oliva P., Duprey J.L., de la Galvez E., Ugarte L., Huayta C., Prunier J., Zouiten C. et al., Transplantation of Epiphytic Bioaccumulators (Tillandsia Capillaris) for High Spatial Resolution Biomonitoring of Trace Elements and Point Sources Deconvolution in a Complex Mining/Smelting Urban Context, “Atmospheric Environment” 2013, 80, p. 330–341, https://doi.org/10.1016/j.atmosenv.2013.08.011.
- 36. Pulles T., Denier van der Gon H., Appelman W., Verheul M., Emission Factors for Heavy Metals from Diesel and Petrol Used in European Vehicles, “Atmospheric Environment” 2012, 61, p. 641–651, https://doi.org/10.1016/j.atmosenv.2012.07.022.
- 37. Mainka A., Children Health Risk Assessment of Metals in Total Suspended Particulate Matter (TSP) and PM1 in Kindergartens during Winter and Spring Seasons, “Atmosphere” 2021, 12, p. 1096, https://doi.org/10.3390/atmos12091096.
- 38. Rachwał M., Wawer M., Jabłońska M., Rogula-Kozłowska W., Rogula-Kopiec P., Geochemical and Mineralogical Characteristics of Airborne Particulate Matter in Relation to Human Health Risk, “Minerals” 2020, 10, p. 866, https://doi.org/10.3390/ min10100866.
- 39. Gurzau E.S., Neagu C., Gurzau A.E., Essential Metals – Case Study on Iron, “Ecotoxicology and Environmental Safety” 2003, 56, p. 190–200, https://doi.org/10.1016/ S0147-6513(03)00062-9.
- 40. Mason L.H., Harp J.P., Han D.Y., Pb Neurotoxicity: Neuropsychological Effects of Lead Toxicity, “BioMed Research International” 2014, 10, p. 840547, https://doi.org/ 10.1155/2014/840547.
- 41. Farooqui Z., Bakulski K.M., Power M.C., Weisskopf M.G., Sparrow D., Spiro A., Vokonas P.S., Nie L.H., Hu H., Park S.K., Associations of Cumulative Pb Exposure and Longitudinal Changes in Mini-Mental Status Exam Scores, Global Cognition and Domains of Cognition: The VA Normative Aging Study, “Environmental Research” 2017, 152, p. 102–108, https://doi.org/10.1016/j.envres.2016.10.007.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7d87ac1-e22f-4cb1-acab-c49a47360390