PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-scale creep analysis of SCM-modified concrete: indentation test and multiscale homogenization method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Traditional concrete creep testing and prediction methods are cumbersome and time-consuming. In this study, the creep behavior of concrete modified with various supplementary cementitious materials (sludge and fly ash, 10-30 wt.%) was investigated and analyzed using the indentation tests and multiscale homogenization analysis. The study revealed that incorporating 10% water treatment sludge ash (WTSA) effectively enhanced concrete’s axial compressive strength and elastic modulus, while reducing its creep strain. This was mainly because adding 10% WTSA improved the compactness of concrete and increased the ratio of high density (HD) C-S-H in C-S-H gel and reduced the width of interfacial transition zone (ITZ). However, a higher content of WTSA admixture was observed to negatively impact the concrete properties. Furthermore, the creep behavior of concrete was predicted through multiscale homogenization calculations. Utilizing the nanoindentation technique, accurate predictions in the multiscale creep model can be obtained by differentiating and quantifying the volume fraction of the physical phase based on the characteristic indentation modulus. In contrast, the quantitative results of the physical phase obtained from the inverse convolution need to be corrected by thermogravimetric analysis and backscattered electrons to obtain a higher level of accuracy in creep prediction.
Rocznik
Strony
art. no. e116, 2024
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
  • College of Civil Engineering, Shaoxing University, Shaoxing 312000, China
  • Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province, Shaoxing 312000, China
autor
  • College of Civil Engineering, Shaoxing University, Shaoxing 312000, China
autor
  • School of Civil Engineering, Central South University, Changsha 410075, China
autor
  • College of Civil Engineering, Shaoxing University, Shaoxing 312000, China
  • Department of Civil Engineering, Faculty of Engineering, Tishk International University, Erbil 44001, Iraq
Bibliografia
  • 1. Ahmed MB, et al. Sorptive removal of dissolved organic matter in biologically-treated effluent by functionalized biochar and carbon nanotubes: Importance of sorbent functionality. Biores Technol. 2018;269:9-17.
  • 2. Shamaki M, Adu-Amankwah S, Black L. Reuse of UK alum water treatment sludge in cement-based materials. Constr Build Mater. 2021;275: 122047.
  • 3. Liu H. Improving anaerobic digestion of sewage sludge using free ammonia pretreatment. Sydney: University of Technology Sydney; 2023.
  • 4. Fang X, et al. Transforming waterworks sludge into controlled low-strength material: Bench-scale optimization and field test validation. J Environ Manage. 2019;232:254-63.
  • 5. Hussein AM, et al. Impacts alum DWTPs sludge discharge and changes in flow regime of the Nile River on the quality of surface water and cultivated soils in Fayoum watershed. Egypt Sci Total Environ. 2021;766: 144333.
  • 6. Yadav S, et al. Feasibility of brackish water and landfill leachate treatment by GO/MoS(2)-PVA composite membranes. Sci Total Environ. 2020;745: 141088.
  • 7. Bhojwani S, et al. Technology review and data analysis for cost assessment of water treatment systems. Sci Total Environ. 2019;651(Pt 2):2749-61.
  • 8. Pham PN, et al. Properties of mortar incorporating untreated and treated drinking water treatment sludge. Constr Build Mater. 2021;280: 122558.
  • 9. Ahmad T, Ahmad K, Alam M. Investigating calcined filter back-wash solids as supplementary cementitious material for recycling in construction practices. Constr Build Mater. 2018;175:664-71.
  • 10. Alqam M. Utilization of cement incorporated with water treatment sludge. Jordan J Civil Eng. 2011;2(5):268-77.
  • 11. Rodríguez NH, et al. Re-use of drinking water treatment plant (DWTP) sludge: Characterization and technological behaviour of cement mortars with atomized sludge additions. Cem Concr Res. 2010;40(5):778-86.
  • 12. De Carvalho Gomes S, et al. Water treatment sludge conversion to biochar as cementitious material in cement composite. J Environ Manage. 2022;306: 114463.
  • 13. He Z, et al. Recycling hazardous water treatment sludge in cement-based construction materials: Mechanical properties, drying shrinkage, and nano-scale characteristics. J Clean Prod. 2021;290: 125832.
  • 14. He Z, et al. Utilization of manganese-rich sludge in concrete: mechanical, nanoscale characteristics and leaching behavior. J Build Eng. 2023;70: 106359.
  • 15. Vandamme M, Ulm FJ. Nanogranular origin of concrete creep. Proc Natl Acad Sci USA. 2009;106(26):10552-7.
  • 16. Li Y, et al. Effect of phases on the creep properties of cement paste based on indentation test and homogenization scheme. Constr Build Mater. 2022;317: 125957.
  • 17. Li Y, et al. Multi-scale creep analysis of river sand and manufactured sand concrete considering the influence of ITZ. Constr Build Mater. 2022;344: 128175.
  • 18. Yu P, et al. Microstructure-based Homogenization Method for Early-Age Creep of Cement Paste. Constr Build Mater. 2018;188:1193-206.
  • 19. He ZH, et al. Recycling of water treatment sludge in concrete: The role of water-binder ratio from a nanoscale perspective. Sci Total Environ. 2023;873: 162456.
  • 20. Lee H, et al. Creep properties of cement and alkali activated fly ash materials using nanoindentation technique. Constr Build Mater. 2018;168:547-55.
  • 21. Wong HS, Head MK, Buenfeld NR. Pore segmentation of cement-based materials from backscattered electron images. Cem Concr Res. 2006;36(6):1083-90.
  • 22. Gao Y, et al. Characterization of ITZ in ternary blended cementitious composites: Experiment and simulation. Constr Build Mater. 2013;41:742-50.
  • 23. Liu Y, et al. Cementitious composites containing alum sludge ash: An investigation of microstructural features by an advanced nanoindentation technology. Constr Build Mater. 2021;299:124286.
  • 24. Bernard O, Ulm FJ, Lemarchand E. A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials. Cem Concr Res. 2003;33(9):1293-309.
  • 25. Hamlin M, Jennings A. model for the microstructure of calcium silicate hydrate in cement paste. Cem Concr Res. 2000;30:101-16.
  • 26. Constantinides G, Ulm FJ. The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cem Concr Res. 2004;34(1):67-80.
  • 27. He Z, et al. Creep behavior of concrete containing glass powder. Compos B Eng. 2019;166:13-20.
  • 28. Liu Y, et al. Cementitious composites containing alum sludge ash: An investigation of microstructural features by an advanced nanoindentation technology. Constr Build Mater. 2021;299: 124286.
  • 29. Hu C, Li Z. Property investigation of individual phases in cementitious composites containing silica fume and fly ash. Cement Concr Compos. 2015;57:17-26.
  • 30. Hou P, et al. Effects of colloidal nanoSiO2 on fly ash hydration. Cement Concr Compos. 2012;34(10):1095-103.
  • 31. Wang A, Zhang C, Sun W. Fly ash effects: II. The active effect of fly ash. Cement Concr Res. 2004;34(11):2057-60.
  • 32. Honorio T, et al. Effective properties of n-coated composite spheres assemblage in an ageing linear viscoelastic framework. Int J Solids Struct. 2017;124:1-14.
  • 33. Pichler C, Lackner R, Mang HA. Multiscale Model For Creep Of Shotcrete - From Logarithmic-type Viscous Behavior of Csh at The Um-scale To Macroscopic Tunnel Analysis. J Adv Concr Technol. 2008;6(1):91-110.
  • 34. Chen Q, et al. Finite-volume homogenization of elastic/viscoelastic periodic materials. Compos Struct. 2017;182:457-70.
  • 35. Li Y, et al. Evaluation of concrete creep properties based on indentation test and multiscale homogenization method. Cement Concr Compos. 2021;123: 104135.
  • 36. Liu Y, et al. Multi-scale creep analysis of cement paste - Indentation prediction and time correspondence of mechanisms. Cement Concr Compos. 2022;134: 104815.
  • 37. Ulm, V.J., Nanoindentation investigation of creep properties of calcium silicate hydrates. Cement and Concrete Research, 2013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7d394d0-e8dc-4d9d-9df4-e27b81af735f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.