PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

GrNFS: A granular neuro-fuzzy system for regression in large volume data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Neuro-fuzzy systems have proved their ability to elaborate intelligible nonlinear models for presented data. However, their bottleneck is the volume of data. They have to read all data in order to produce a model. We apply the granular approach and propose a granular neuro-fuzzy system for large volume data. In our method the data are read by parts and granulated. In the next stage the fuzzy model is produced not on data but on granules. In the paper we introduce a novel type of granules: a fuzzy rule. In our system granules are represented by both regular data items and fuzzy rules. Fuzzy rules are a kind of data summaries. The experiments show that the proposed granular neuro-fuzzy system can produce intelligible models even for large volume datasets. The system outperforms the sampling techniques for large volume datasets.
Rocznik
Strony
445--459
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
  • Department of Algorithmics and Software, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
Bibliografia
  • [1] Ahmed, M.M. and Isa, N.A.M. (2017). Knowledge base to fuzzy information granule: A review from the interpretability-accuracy perspective, Applied Soft Computing 54: 121–140.
  • [2] Alcalá, R., Alcalá-Fdez, J., Casillas, J., Cordón, O. and Herrera, F. (2006). Hybrid learning models to get the interpretability-accuracy trade-off in fuzzy modeling, Soft Computing 10(9): 717–734.
  • [3] Alonso, J.M. and Magdalena, L. (2011). Special issue on interpretable fuzzy systems, Information Sciences 181(20): 4331–4339.
  • [4] Atanassov, K.T. (1986). Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1): 87–96.
  • [5] Bargiela, A. and Pedrycz, W. (2006). The roots of granular computing, 2006 IEEE International Conference on Granular Computing, Atlanta, USA, pp. 806–809.
  • [6] Bisi, C., Chiaselotti, G., Ciucci, D., Gentile, T. and Infusino, F.G. (2017). Micro and macro models of granular computing induced by the indiscernibility relation, Information Sciences 388–389: 247–273.
  • [7] Botta, A., Lazzerini, B., Marcelloni, F. and Stefanescu, D.C. (2009). Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index, Soft Computing 13(5): 437–449.
  • [8] Ciucci, D. (2016). Orthopairs and granular computing, Granular Computing 1: 159–170.
  • [9] Cpałka, K., Łapa, K., Przybył, A. and Zalasiński, M. (2014). A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects, Neurocomputing 135: 203–217.
  • [10] Dunn, J.C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact, well separated clusters, Journal Cybernetics 3(3): 32–57.
  • [11] Evsukoff, A.G., Galichet, S., de Lima, B.S. and Ebecken, N.F. (2009). Design of interpretable fuzzy rule-based classifiers using spectral analysis with structure and parameters optimization, Fuzzy Sets and Systems 160(7): 857–881.
  • [12] Gacto, M.J., Alcalá, R. and Herrera, F. (2011). Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures, Information Sciences 181(20): 4340–4360.
  • [13] Herrera, L.J., Pomares, H., Rojas, I., Valenzuela, O. and Prieto, A. (2005). TASE, a Taylor series-based fuzzy system model that combines interpretability and accuracy, Fuzzy Sets and Systems 153(3): 403–427.
  • [14] Hu, X., Pedrycz, W., Wu, G. and Wang, X. (2017). Data reconstruction with information granules: An augmented method of fuzzy clustering, Applied Soft Computing 55: 523–532.
  • [15] Juang, C.-F. and Chen, C.-Y. (2013). Data-driven interval type-2 neural fuzzy system with high learning accuracy and improved model interpretability, IEEE Transactions on Cybernetics 43(6): 1781–1795.
  • [16] Juang, C.-F. and Lin, C.-T. (1998). An online self-constructing neural fuzzy inference network and its applications, IEEE Transactions on Fuzzy Systems 6(1): 12–32.
  • [17] Juang, C.F. and Tsao, Y.W. (2008). A type-2 self-organizing neural fuzzy system and its FPGA implementation, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 38(6): 1537–1548.
  • [18] Keet, C.M. (2008). A Formal Theory of Granularity, PhD thesis, Free University of Bozen-Bolzano, Bolzano.
  • [19] Leski, J. (2008). Neuro-Fuzzy Systems, Scientific and Engineering Publishers WNT, Warsaw, (in Polish).
  • [20] Lorenz, E.N. (1963). Deterministic nonperiodic flow, Journal of the Atmospheric Sciences 20(2): 130–141.
  • [21] Mackey, M.C. and Glass, L. (1977). Oscillation and chaos in physiological control systems, Science 197(4300): 287–289.
  • [22] Mendel, J.M. (2004). Computing derivatives in interval type-2 fuzzy logic systems, IEEE Transactions on Fuzzy Systems 12(1): 84–98.
  • [23] Pawlak, Z. (1996). Rough sets, rough relations and rough functions, Fundamenta Informaticae 27(2): 103–108.
  • [24] Pedrycz, A., Hirota, K., Pedrycz, W. and Dong, F. (2012). Granular representation and granular computing with fuzzy sets, Fuzzy Sets and Systems 203: 17–32.
  • [25] Pedrycz, W. (1998). Shadowed sets: Representing and processing fuzzy sets, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 28(1): 103–109.
  • [26] Pedrycz, W. (2013). Granular Computing: Analysis and Design of Intelligent Systems, CRC Press, Boca Raton.
  • [27] Pedrycz,W. and Gomide, F. (2007). Fuzzy Systems Engineering: Toward Human-Centric Computing, JohnWiley, Hoboken.
  • [28] Pedrycz, W., Hmouz, R.A., Balamash, A.S. and Morfeq, A. (2015a). Hierarchical granular clustering: An emergence of information granules of higher type and higher order, IEEE Transactions on Fuzzy Systems 23(6): 2270–2283.
  • [29] Pedrycz, W. and Homenda, W. (2013). Building the fundamentals of granular computing: A principle of justifiable granularity, Applied Soft Computing 13(10): 4209–4218.
  • [30] Pedrycz, W., Succi, G., Sillitti, A. and Iljazi, J. (2015b). Data description: A general framework of information granules, Knowledge-Based Systems 80: 98–108.
  • [31] Qian, Y.H., Liang, J.Y., Yao, Y.Y. and Dang, C.Y. (2010). MGRS: A multi-granulation rough set, Information Sciences 180(6): 949–970.
  • [32] Qian, Y., Liang, J.,Wu, W.-Z. and Dang, C. (2011). Information granularity in fuzzy binary GrC model, IEEE Transactions on Fuzzy Systems 19(2): 253–264.
  • [33] Reyes-Galaviz, O.F. and Pedrycz, W. (2015). Granular fuzzy models: Analysis, design, and evaluation, International Journal of Approximate Reasoning 64: 1–19.
  • [34] Rössler, O.E. (1976). An equation for continuous chaos, Physics Letters A 57(5): 397–398.
  • [35] Salehi, S., Selamat, A. and Fujita, H. (2015). Systematic mapping study on granular computing, Knowledge-Based Systems 80: 78–97.
  • [36] Shifei, D., Li, X., Hong, Z. and Liwen, Z. (2010). Research and progress of cluster algorithms based on granular computing, International Journal of Digital Content Technology and Its Applications 4(5): 96–104.
  • [37] Siminski, K. (2014). Neuro-fuzzy system with weighted attributes, Soft Computing 18(2): 285–297.
  • [38] Siminski, K. (2015). Rough subspace neuro-fuzzy system, Fuzzy Sets and Systems 269: 30–46.
  • [39] Siminski, K. (2017). Interval type-2 neuro-fuzzy system with implication-based inference mechanism, Expert Systems with Applications 79C: 140–152.
  • [40] Siminski, K. (2019). NFL—free library for fuzzy and neuro-fuzzy systems, in S. Kozielski et al. (Eds), Beyond Databases, Architectures and Structures. Paving the Road to Smart Data Processing and Analysis, Springer International Publishing, Cham, pp. 139–150.
  • [41] Siminski, K. (2020). GrFCM—Granular clustering of granular data, in A. Gruca et al. (Eds), Man–Machine Interactions 6, Springer, Cham, pp. 111–121.
  • [42] Siminski, K. (2021). An outlier-robust neuro-fuzzy system for classification and regression, International Journal of Applied Mathematics and Computer Science 31(2): 303–319, DOI: 10.34768/amcs-2021-0021.
  • [43] Skowron, A., Jankowski, A. and Dutta, S. (2016). Interactive granular computing, Granular Computing 1: 95–113.
  • [44] Sugeno, M. and Kang, G.T. (1988). Structure identification of fuzzy model, Fuzzy Sets ans Systems 28(1): 15–33.
  • [45] Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its application to modeling and control, IEEE Transactions on Systems, Man and Cybernetics 15(1): 116–132.
  • [46] Wang, D., Pedrycz, W. and Li, Z. (2019). Granular data aggregation: An adaptive principle of the justifiable granularity approach, IEEE Transactions on Cybernetics 49(2): 1–10.
  • [47] Yang, X., Li, T., Liu, D. and Fujita, H. (2019). A temporal-spatial composite sequential approach of three-way granular computing, Information Sciences 486: 171–189.
  • [48] Yao, J.T., Vasilakos, A.V. and Pedrycz, W. (2013). Granular computing: Perspectives and challenges, IEEE Transactions on Cybernetics 43(6): 1977–1989.
  • [49] Yao, Y. (2007). The art of granular computing, in M. Kryszkiewicz et al. (Eds), Rough Sets and Intelligent Systems Paradigms, Springer, Berlin/Heidelberg, pp. 101–112.
  • [50] Yao, Y. (2008). Granular computing: Past, present and future, 2008 IEEE International Conference on Granular Computing, GrC 2008, Hangzhou, China, pp. 80–85.
  • [51] Yao, Y. (2018). Three-way decision and granular computing, International Journal of Approximate Reasoning 103: 107–123.
  • [52] Yao, Y. (2020). Three-way granular computing, rough sets, and formal concept analysis, International Journal of Approximate Reasoning 116: 106–125.
  • [53] Yao, Y. and Zhong, N. (2007). Granular computing, in B.W. Wah (Ed.), Wiley Encyclopedia of Computer Science and Engineering, Wiley, Hoboken.
  • [54] Yen, J., Wang, L. and Gillespie, C. W. (1998). Improving the interpretability of TSK fuzzy models by combining global learning and local learning, IEEE Transactions on Fuzzy Systems 6(4): 530–537.
  • [55] Zadeh, L.A. (1965). Fuzzy sets, Information and Control 8: 338–353.
  • [56] Zadeh, L.A. (1979). Fuzzy sets and information granularity, in N. Gupta et al. (Eds), Advances in Fuzzy Set Theory and Applications, North-Holland Publishing, Amsterdam, pp. 3–18.
  • [57] Zadeh, L.A. (1997). Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic, Fuzzy Sets and Systems 90(2): 111–127.
  • [58] Zadeh, L.A. (2002). From computing with numbers to computing with words—From manipulation of measurements to manipulation of perceptions, International Journal of Applied Mathematics and Computer Science 12(3): 307–324.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7cf7b08-bb48-42b4-a1a2-7f00429e6b38
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.