Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Analiza numeryczna układania pasa tkaniny przy zadanych warunkach brzegowych
Języki publikacji
Abstrakty
This paper deals with the numerical analysis of a stacking or folding of the flat textiles. This may be used for the solution of large deflection problems of flexible strips such as fabric sheets. It was assumed that during the run of bending phenomenon the flat strip of the fabric will be represented as its longitudinal section. The mathematical model of the fabric was presented as a flat deflection curve, i.e. heavy elastica. Elastica was described using the system of six first-order differential equations accompanied by a set of boundary conditions. The problem was solved by the numerical shooting method. The investigations can be used for simulation of fabric folding, stacking and for another applications from the field of textile mechanics.
W artykule opisano analizę numeryczną procesu układania (składania) płaskich wyrobów tekstylnych. Przedstawiona metoda może być wykorzystana do rozwiązywania problemów dużych ugięć takich obiektów, jak np. płaski pas tkaniny. Założono, że w trakcie przebiegu zjawiska zginania płaski pas tkaniny będzie reprezentowany jako przekrój podłużny. Model matematyczny tkaniny przedstawiono w postaci płaskiej krzywej ugięcia, czyli ciężkiej elastyki. Elastyka została opisana za pomocą układu sześciu równań różniczkowych pierwszego rzędu wraz z zestawem odpowiednich warunków brzegowych. Problem rozwiązano numeryczną metodą strzału. Przeprowadzone badania i uzyskane wyniki można wykorzystać do symulacji układania tkanin oraz do innych zastosowań z zakresu mechaniki tekstyliów.
Wydawca
Rocznik
Tom
Strony
36--42
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wz.
Twórcy
autor
- Katedra Inżynierii Mechanicznej, Informatyki Technicznej i Chemii Materiałów Polimerowych, Wydział Technologii Materiałowych i Wzornictwa Tekstyliów, Politechnika Łódzka, 90-543 Łódź, ul. Żeromskiego 116
Bibliografia
- [1] Gere J. M. 2004. Mechanics of Materials, 6th ed. Belmont, CA, USA: Brooks/Cole‑Thomson Learning.
- [2] Lee B. K., J. F. Wilson, S. J. Oh. 1993. “Elastica of cantilevered beams with variable cross sections”. International Journal of Non-Linear Mechanics 28 : 579‑589.
- [3] Baker G. 1993. “On the large deflections of non-prismatic cantilevers with a finite depth”. Computers & Structures, 46(2) : 365‑370.
- [4] Dado M., S. AL-Sadder. 2005. “A new technique for large deflection analysis of non-prismatic cantilever beams”. Mechanics Research Communications 32(6) : 692‑703.
- [5] Shatnawi A., S. AL‑Sadder. 2007. “Exact Large Deflection Analysis of Nonprismatic Cantilever Beams of Nonlinear Bimodulus Material Subjected to Tip Moment”. Journal of Reinforced Plastics and Composites 26(12) : 1253‑1268.
- [6] Shvartsman B. S. 2007. “Large deflections of a cantilever beam subjected to a follower force”. Journal of Sound and Vibration 304(3‑5) : 969‑973.
- [7] Szablewski Piotr, Waldemar Kobza. 2003. “Numerical analysis of Peirce’s cantilever test for the bending rigidity of textiles”. Fibres & Textiles in Eastern Europe 11(4) : 54‑57.
- [8] AL‑Sadder S., R. AL‑Rawi. 2006. “Finite difference scheme for large‑deflection analysis of non-prismatic cantilever beams subjected to different types of continuous and discontinuous loadings”. Archive of Applied Mechanics 75(8) : 459‑473.
- [9] Ibrahimbegovic A. 1995. “On finite element implementation of geometrically nonlinear Reissner’s beam theory: three‑dimensional curved beam elements”. Computer Methods in Applied Mechanics and Engineering 122(1-2) : 11‑26.
- [10] Lewis G., F. Monasa. 1981. “Large deflections of cantilever beams of nonlinear materials”. Computers & Structures 14(5-6) : 357‑360.
- [11] Lee K. 2002. “Large deflections of cantilever beams of non‑linear elastic material under a combined loading”. International Journal of Non-Linear Mechanics 37(3) : 439‑443.
- [12] Rezazadeh G. 2008. “A comprehensive model to study nonlinear behavior of multilayered micro beam switches”. Microsystem Technologies 14 : 135‑141.
- [13] Antman S. S. 1984. “Large lateral buckling of nonlinearly elastic beams”. Archive for Rational Mechanics and Analysis 84 : 293‑305.
- [14] Cesnik C., V. Sutyrin, D. Hodges. 1996. “Refined theory of composite beams: The role of short wavelength extrapolation”. International Journal of Solids and Structures 33(10) : 1387‑1408.
- [15] Szablewski Piotr. 2006. “Analysis of the stability of a flat textile structure”. Autex Research Journal 6(4) : 204‑215.
- [16] Seames A. E., H. D. Conway. 1957. “A Numerical Procedure for Calculating the Large Deflections of Straight and Curved Beams”. Journal of Applied Mechanics 24(2) : 289‑294.
- [17] Rohde F. V. 1953. “Large deflections of cantilever beams with uniformly distributed load”. Quarterly of Applied Mathematics 11 : 337‑338.
- [18] Lee Han-Ch., A. J. Durelli, V. J. Parks. 1969. “Stresses in Largely Deflected Cantilever Beams Subjected to Gravity”. Journal of Applied Mechanics 36 : 323‑325.
- [19] Szablewski Piotr, Ryszard Korycki. 2016. “Shape Determination of Elastica Subjected to Bending by Means of Displacements”. Fibres & Textiles in Eastern Europe 24(6) : 138‑142.
- [20] Belendez T., M. Perez‑Polo, C. Neipp, A. Belendez. 2005. “Numerical and Experimental Analysis of Large Deflections of Cantilever Beams Under a Combined Load”. Physica Scripta 2005(T118) : 61‑65.
- [21] Frisch‑Fay R. 1962. “Large Deflections of a Cantilever Under Two Concentrated Loads”. Journal of Applied Mechanics 29(1) : 200‑201.
- [22] Bisshopp K. E., D. C. Drucker. 1945. “Large deflections of cantilever beams”. Quarterly of Applied Mathematics 3 : 272‑275.
- [23] Howell L. L., A. Midha. 1995. “Parametric Deflection Approximations for End-Loaded Large-Deflection Beams in Compliant Mechanisms”. Journal of Mechanical Design 117(1) : 156‑165.
- [24] Belendez T., C. Neipp, A. Belendez. 2002. “Large and small deflections of a cantilever beam”. European Journal of Physics 23(3) : 371‑379.
- [25] Saxena A., S. N. Kramer. 1998. “A Simple and Accurate Method for Determining Large Deflections in Compliant Mechanisms Subjected to End Forces and Moments”. Journal of Mechanical Design 120(3) : 392‑400.
- [26] Peirce F. T. 1930. “The ‘Handle’ of Cloth as a Measurable Quantity”. Journal of the Textile Institute Transactions 21(9) : T377‑T416.
- [27] Hearle J. W. S., M. Konopasek, A. Newton. 1972. “On Some General Features of a Computer-Based System for Calculation of the Mechanics of Textile Structures”. Textile Research Journal 42(10) : 613‑626.
- [28] Hearle J. W. S., P. Grosberg, S. Backer. 1969. Structural Mechanics of Fibres, Yarns, and Fabrics, vol. 1. New York, NY, USA: Wiley InterScience.
- [29] Konopasek M., W. J. Shanahan. 1975. “A Mechanical Model of the 2/2 Twill Weave”. Journal of the Textile Institute 66(10) : 351‑357.
- [30] Shanahan W. J., D. W. Lloyd, J. W. S. Hearle. 1978. “Characterizing the Elastic Behavior of Textile Fabrics in Complex Deformations”. Textile Research Journal 48(9) : 495‑505.
- [31] Lloyd D. W. 1976. “A Computational Approach to the Mechanics of Complex Fabric Deformations”, Ph.D. thesis. Manchester, United Kingdom: The University of Manchester. Source: Dissertations Abstracts International 81‑02(section B).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7cf3990-4e8e-456f-929a-cc7c1f31125d