PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Erosive Wear of Graphene Oxide Reinforced Epoxy Powder Coatings

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zużycie erozyjne epoksydowej farby proszkowej z dodatkiem tleku grafenu
Języki publikacji
EN
Abstrakty
EN
Powder coatings are organic coatings that protect the metal substrate against corrosion and wear, and play a decorative role. The doping of paints with nanoparticles is intended to create a barrier to corrosive and chemical agents and to increase abrasion resistance. This work tested the erosion resistance of epoxy powder coating with graphene oxide flakes and polyethylene wax covered with a layer of micro diamonds. Two methods of testing resistance to abrasive wear were used, in which the conditions are similar to operating conditions: solid particle impingement (sandblasting) and barrel finisher with ceramic shapes. Mass loss due to erosion in a sandblaster using glass beads with a diameter of 200 µm for the paint with graphene was much lower than for the reference sample. The mass loss of the samples was tested after 15, 30, and 60 seconds of abrasive jet operation. The surface texture was analyzed during the process and after the test. The test in the barrel finisher was carried out twice for different times: for the first series weight loss was measured after 30, 90, and 210 minutes, for the second Vickers hardness at 40 g load after 90 and 210 minutes. The tests showed that the epoxy coating with the addition of graphene oxide has a much higher resistance to erosion under the influence of an abrasive stream than the reference paint, and a similar resistance to erosion in a container smoother. It was found that the paints showed a higher Vickers hardness after the wear test.
PL
Farby proszkowe są powłokami organicznymi zabezpieczającymi podłoże najczęściej metalowe przed korozją, zużyciem oraz pełnią rolę dekoracyjną. Domieszkowanie farb nanocząstkami ma na celu stworzenie bariery dla czynników korozyjnych i chemicznych oraz zwiększenie wytrzymałości na ścieranie. W niniejszej pracy zbadano odporność na erozję epoksydowych farb proszkowych z płatkami tlenku grafenu oraz woskiem polietylenowym pokrytym warstwą mikrodiamentów. Zastosowano dwie metody badań odporności na zużycie ścierne, w których warunki są zbliżone do eksploatacyjnych: strumieniowo-ścierną (piaskowanie) oraz w rotacyjnej wygładzarce z kształtkami ceramicznymi. Utrata masy pod wpływem erozji w piaskarce z użyciem kulek szklanych o średnicy 200 µm dla farby z grafenem była dużo niższa niż dla próbki odniesienia. Ubytek masy próbek badano po 15, 30 i 60 sekundach działania strumienia ściernego. Analizowano teksturę powierzchni w trakcie procesu oraz po teście. Test w wygładzarce przeprowadzono dwukrotnie dla różnych czasów: dla pierwszej serii zmierzono ubytek masy po 30, 90 i 210 minutach, dla drugiej twardość Vickersa przy obciążeniu 40 g po 90 i 210 minutach. Badania wykazały, że farba epoksydowa z dodatkiem tlenku grafenu wykazuje dużo wyższą niż farba odniesienia odporność na erozję pod wpływem strumienia ściernego oraz podobną odporność na erozję w wygładzarce pojemnikowej. Stwierdzono, że farby wykazują wyższą twardość Vickersa po próbie zużycia.
Czasopismo
Rocznik
Tom
Strony
31--42
Opis fizyczny
Bibliogr. 48 poz., fot., rys., tab., wykr.
Twórcy
  • AMIS Powder Coatings, 11-040 Nowa Wieś Mała 32, Poland
  • Warsaw University of Technology, Faculty of Mechanical and Industrial Engineering, Narbutta 85 Street, 02-524 Warsaw, Poland
Bibliografia
  • 1. Fernandez-Alvarez, M., Velasco, F., Bautista A.: Performance of ultraviolet exposed epoxy powder coatings functionalized with silica by hot mixing. J Mater Res Technol. 2021, 10, pp.1042–1057.
  • 2. Fernandez-Alvarez, M., Velasco, F., Bautista A.: Effect of silica nanoparticles on the curing kinetics and erosion wear of an epoxy powder coating. J Mater Res Technol. 2020, 9(1), pp. 455–464.
  • 3. Barletta, M., Gisario, A., Trovalusci, F., Vesco S.: Visual appearance and scratch resistance of highperformance thermoset and thermoplastic powder coatings. Progress in Organic Coatings. 2013, 76(1), pp. 244–256.
  • 4. Zhang, J., Kong, G., Li, S., Le, Y., Che C., Zhang, S., Lai, D., Liao, X.: Graphene-reinforced epoxy powder coating to achieve high-performance wear and corrosion resistance. Journal of Materials Research and Technology. 2022, 20, pp. 4148–460.
  • 5. Huttunen-Saarivirta, E., et al.: Characterization and corrosion protection properties of epoxy powder coatings containing nanoclays. Progress in Organic Coatings. 2013, 76(4), pp. 757–767.
  • 6. Luo, S., Zheng, Y., Li, J., Ke, W.: Effect of curing degree and fillers on slurry erosion behavior of fusion-bonded epoxy powder coatings. Wear 2003, 254(3–4), pp. 292–297.
  • 7. Li, W., Franco, D.C., Yang, M.S., Zhu, X., Zhang, H., Shao, Y., Zhang, H., Zhu, J.: Investigation of the performance of ATH powders in organic powder coatings. Coatings. 2019, 9(2), p. 110.
  • 8. Fernández-Álvarez, M., Velasco, F., Bautista, A.: Epoxy powder coatings hot mixed with nanoparticles to improve their abrasive wear. Wear. 2020, 448, p. 203211.
  • 9. Fernández-Álvarez, M., Velasco, F., Torres-Carrasc,o M., Bautista, A.: Hindering the decrease in wear resistance of UV-exposed epoxy powder coatings by adding nano-SiO2 through ball milling. Wear 2021, 480, p. 203935.
  • 10. Fernández-Álvarez, M., Hijón-Montero, C., Bautista, A., Velasco, F., de la Fuente, D.: The effect of additions of anticorrosive pigments on the cathodic delamination and wear resistance of an epoxy powder coating. Progress in Organic Coatings. 2022, 173, p 107165.
  • 11. Muralishwara, K., Kini, U.A., Sharma, S.: Epoxy-clay nanocomposite coatings: A review on synthesis and characterization. Materials Research Express. 2019, 6(8), p. 082007.
  • 12. Sharifi, M., Ebrahimi, M., Jafarifard, S.: Preparation and characterization of a high-performance powder coating based on epoxy/ clay nanocomposite, 2017 Prog. Org. Coat. 106, pp. 69–76.
  • 13. Vanzetto, A.B., Marocco, M.V., de Lima, G.G., Beltrami, L.V., Zattera, A.J., Piazza, D.: Antimicrobial and mechanical performance of epoxy/graphene-based powder coatings. Iranian Polymer Journal. 2023, 32(1), p. 1–1.
  • 14. Satheesan, B., Mohammed, A.S.: Tribological characterization of epoxy hybrid nanocomposite coatings reinforced with graphene oxide and titania. Wear. 2021, 466, 203560.
  • 15. Medeiros, F.D., Cury, C.S., de Vasconcelos, C.K., Silva, G.G.: Reduced graphene oxide as an adhesion enhancer of fusion-bonded epoxy coatings. Progress in Organic Coatings. 2022, 171, 107057.
  • 16. Baig, M.M., Samad, M.A.: Epoxy\epoxy composite/epoxy hybrid composite coatings for tribological applications – a review. Polymers. 2021, 13(2), p. 179.
  • 17. Andreatta, F., Rondinella, A., Zanocco, M., Capurso, G., Vendramin, R., Guarino, A., Fedrizzi, L.: Corrosion, electrical and thermal behavior of graphene-modified polyester powder coatings. Progress in Organic Coatings. 2023, 179, 107517.
  • 18. Momber, A.: Blast cleaning technology. Springer Science & Business Media; 2007.
  • 19. Patnaik, A., Satapathy, A., Chand, N., Barkoula, N.M., Biswas, S.: Solid particle erosion wear characteristics of fiber and particulate filled polymer composites: A review. Wear. 2010, 268(1–2), pp. 249–263.
  • 20. ASTM D968-15: Abrasion Resistance of Organic Coatings by Falling Abrasive.
  • 21. Kotnarowska, D., Przerwa, M., Szumiata, T.: Resistance to erosive wear of epoxy-polyurethane coating modified with nanofillers. Journal of Materials Science Research. 2014, 3(2), p. 52.
  • 22. Papini, M., Spelt, J.K.: Organic coating removal by particle impact. Wear. 1997, 213(1–2), pp. 185–199.
  • 23. Hutchings, I.M.: Abrasive and erosive wear tests for thin coatings: a unified approach. Tribology International. 1998, 31(1–3), pp. 5–15.
  • 24. Yu, X., Wei, X., Huang, X., Zhang, L.: Study on the Modeling Method and Influencing Parameters of Sandblasting Process for Blade Grinding. Advances in Materials Science and Engineering. 2022.
  • 25. Li, H.Z., Wang, J,, Fan, J.M.: Analysis and modeling of particle velocities in micro-abrasive air jet. International Journal of Machine Tools and Manufacture. 2009 Sep 1; 49(11), pp. 850–858.
  • 26. Fan, J.M., Li, H.Z., Wang, J., Wang, C.Y.: A study of the flow characteristics in micro-abrasive jets. Experimental Thermal and Fluid Science. 2011, 35(6), pp. 1097–106.
  • 27. Arani N.H, Rabba W., Papini M.: Solid particle erosion of epoxy matrix composites reinforced by Al2O3 spheres. Tribology International. 2019, 136, pp. 432–445.
  • 28. Dasari, F.A., Yu, Z.Z., Mai, Y.W.: Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites. Materials Science and Engineering: R: Reports. 2009, 63(2), pp. 31–80.
  • 29. Nirmal, U., Halim, I., Salem, M.A., Alsayed, M., Singh J.: A review on tribological wear test rigs for various applications. International Journal of Integrated Engineering. 2018, 10(8).
  • 30. Boggarapu, V., Gujjala, R., Ojha, S.: A critical review on erosion wear characteristics of polymer matrix composites. Materials Research Express. 2020, 7(2), 022002.
  • 31. Radziejewska, J., Grzelka, J.: Effect of concentration GO and diamond wax and method of introducing additives on morphology and properties of epoxy powder coating. Polymer Testing. 2023, 117, 107866.
  • 32. Shi, X., Nguyen, T.A., Suo, Z., Liu, Y., Avci, R.: Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surface and Coatings Technology. 2009, 204(3), pp. 237–245.
  • 33. Sutowski, P., Plichta, J., Kałduński, P.: Determining kinetic energy distribution of the working medium in a centrifugal disc finishing process – part 1: theoretical and numerical analysis with DEM method. The International Journal of Advanced Manufacturing Technology. 2019, 104, pp. 1345–1355.
  • 34. Weiler, W.: The relationship between Vickers hardness and universal hardness. Plating and Surface Finishing. 1992, 79:53.
  • 35. Miller, D.C., Muller, M.T., Simpson, L.J.: Review of artificial abrasion test methods for PV module technology. National Renewable Energy Lab. (NREL), Golden, CO (United States), 2016.
  • 36. Patnaik, A., Satapathy, A., Chand, N., Barkoula, N.M., Biswas S.: Solid particle erosion wear characteristics of fiber and particulate filled polymer composites: A review. Wear 2010, 268(1–2), pp. 249–263.
  • 37. Finnie, I.: Some reflections on the past and future of erosion. Wear. 1995, 186, pp. 1–10.
  • 38. Zouari, B., Touratier, M.: Simulation of organic coating removal by particle impact. Wear. 2002, 253 (3–4), pp. 488–497.
  • 39. Barkoula, N.M., Karger-Kocsis, J.: Review processes and influencing parameters of the solid particle erosion of polymers and their composites. Journal of Materials Science. 2002, 37, pp. 3807–3820.
  • 40. Zmitrowicz, A.: Wear patterns and laws of wear – a review. Journal of Theoretical and Applied Mechanics. 2006, 44(2), pp. 219–253.
  • 41. Pocius, A.V., Dillard D.A.: Adhesion science and engineering: surfaces, chemistry, and applications. The Mechanics of Adhesion. Elsevier, 2002, 310, p. 333.
  • 42. Pommersheim, J.M., Nguyen, T.: Prediction of blistering in coating systems. 1998, pp. 137–150.
  • 43. ASTM D2240; Standard Test Method for Rubber Property – Durometer Hardness. ASTM International: West Conshohocken, PA, USA, 1964; Reapproved 2021.
  • 44. Das, S., Mondal, D.P., Dasgupta, R., Prasad B.K.: Mechanisms of material removal during erosioncorrosion of an Al–SiC particle composite. Wear 1999, 36(1–2), pp. 295–302.
  • 45. Trezona, R.I., Hutchings, I.M.: Resistance of paint coatings to multiple solid particle impact: effect of coating thickness and substrate material. Progress in Organic Coatings. 2001, 41(1–3), pp. 85–92.
  • 46. Mirabedini, S.M., Scantlebury, J.D., Thompson, G.E., Moradian, S.: Adhesive strength of powder coated aluminum substrates. International Journal of Adhesion and Adhesives. 2005, 25(6), pp. 484–494.
  • 47. Huang, Y.H., Wang, J.: Prediction of coating adhesion loss due to stretching. International Journal of Adhesion and Adhesives. 2013, 40, pp. 49–55.
  • 48. Pourhashem, S., Vaezi, M.R., Rashidi, A., Bagherzadeh, M.R.: Distinctive roles of silane coupling agents on the corrosion inhibition performance of graphene oxide in epoxy coatings. Progress in Organic Coatings. 2017, 111, pp. 47–56.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7cc4e2d-814c-4250-823f-a4bd11c3e96a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.