PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study temperature evolution of pseudoelastic TiNi alloys during shock-induced phase transformation

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The temperature evolution and the mechanical characteristics of pseudoelasticity TiNi alloys have been studied experimentally at different strain rates. During SHPB testing, the temperature changes were in situ measured by an infrared system recording infrared radiation emitted from the surface of the specimen. It was found that the temperature evolution and the mechanical behavior has a remarkable strain rate effect. With the strain rate increasing, both phase transition subsequent stress and modulus of loading the phase transition stage were higher, exhibiting significant strain and the strain rate hardening characteristic. They were accompanied by the temperature increasing, which suggest that the stress increments result from the temperature change, independently of the strain rate. Calculation analysis results show that latent heat and the dissipated energy in the form of the hysteresis loops, are mainly the sources of the temperature change.
Rocznik
Strony
191--205
Opis fizyczny
Bibliogr. 29 poz., rys. kolor.
Twórcy
autor
  • Department of Engineering Mechanics School of Civil Engineering Henan Polytechnic University Jiaozuo, Henan 454000, China
autor
  • Department of Engineering Mechanics School of Civil Engineering Henan Polytechnic University Jiaozuo, Henan 454000, China
  • CAS Key Laboratory of Mechanical Behavior and Design of Materials Department of Modern Mechanics University of Science and Technology of China Hefei, Anhui 230027, China
  • liuyongg@hpu.edu.cn
autor
  • CAS Key Laboratory of Mechanical Behavior and Design of Materials Department of Modern Mechanics University of Science and Technology of China Hefei, Anhui 230027, China
Bibliografia
  • 1. R. Abeyaratne, J.K. Knowles, A continuum model of a thermoelastic solid capable of undergoing phase transitions, Journal of the Mechanics and Physics of Solids, 41, 541–571, 1993.
  • 2. L. Delaey, R.V. Krishnan, H. Tas, H. Warlimont, Review thermoelasticity, pseudoelasticity and the memory effects associated with martensitic transformations, Part 1. Structural and microstructural changes associated with transformations, Journal of Materials Science, 9, 1521–1535, 1974.
  • 3. J.A. Shaw, Simulations of localized thermo-mechanical behavior in a NiTi shape memory alloy, International Journal of Plasticity, 16, 541–562. 2000.
  • 4. M.A. Iadicola, J.A. Shaw, Rate and thermal sensitivities of unstable transformation behavior in a shape memory alloy, International Journal of Plasticity, 20, 577–605, 2004. 204 L. Shen, Y. Liu, J. Shan
  • 5. G.N. Dayananda, M. Subba Rao, Effect of strain rate on properties of superelastic NiTi thin wires, Materials Science and Engineering A, 486, 96–103, 2008.
  • 6. P.H. Leo, T.W. Shield, O.P. Bruno, Transient heat transfer effects on the pseudoelastic behavior of shape-memory wires, Acta Metallurgica et Materialia, 41, 8, 2477–2485, 1993.
  • 7. C. Elibol, X. Wagner, Strain rate effects on the localization of the stress-induced martensitic transformation in pseudoelastic NiTi under uniaxial tension, compression and compression–shear, Materials Science and Engineering A, 643, 194–202, 2015.
  • 8. X.H. Zhang, P. Feng, Y.J. He, T.X. Yu, Q.P. Sun, Rate dependence of macroscopic domain patterns in stretched NiTi strips, International Journal of Mechanical Sciences, 52, 1660–1670, 2010.
  • 9. J.A. Shaw, S. Kyriakides, Thermo-mechanical aspects of NiTi, Journal of the Mechanics and Physics of Solids, 43, 8, 1243–1281, 1995.
  • 10. P.G. McCormick, Y. Liu, S. Miyazaki, Intrinsic thermal-mechanical behavior associated with the stress-induced martensite transformation in TiNi, Materials Science and Engineering A, 167, 51–56, 1993.
  • 11. F. Auricchio, E. Sacco, Thermo-mechanical modeling of superelastic shape memory wire undercylic stretching-bending loadings, International Journal of Solids and Structures, 38, 6123–6145, 2001.
  • 12. L. Anand, M.E. Gurtin, Thermal effects in the superelasticity of crystalline shape memory materials, Journal of the Mechanics and Physics of Solids, 51, 1015–1058, 2003.
  • 13. C. Morin, Z. Moumni, W. Zaki, Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling, International Journal of Plasticity, 27, 1959–1980, 2011.
  • 14. O.P. Bruno, P.H. Leo, F. Reitich, Free boundary conditions at austenite-martensite interfaces, Physical Review Letters, 74, 746–749, 1995.
  • 15. Q.P. Sun, Z.Q. Li, Phase transformation in superelastic NiTi polycrystalline micro-tubes under tension and torsion-from localization to homogeneous deformation, International Journal of Solids and Structures, 39, 3797–3809, 2002.
  • 16. J.J. Mason, A.J. Rosakis, G. Ravichandran, On the strain and strain rate dependence of the fraction of plastic work converted into heat: an experimental study using high-speed infrared detectors and the Kolsky bar, Mechanics of Materials, 17, 135–145, 1994.
  • 17. P.R. Guduru, A.J. Rosakis, G. Ravichandran, Dynamic shear bands: an investigation using high speed optical and infrared diagnostics, Mechanics of Materials, 33, 371–402, 2001.
  • 18. A.T. Zehnder, A.J. Rosakis, On the temperature distribution at the vicinity of dynamically propagating cracks in 4340 steel, Journal of the Mechanics and Physics of Solids, 39, 385–415, 1991.
  • 19. P.R. Guduru, A.T. Zehnder, A.J. Rosakis, et al., Dynamic full field measurements of crack tip temperatures, Engineering Fracture Mechanics, 68, 14, 1535–1556, 2001.
  • 20. R. Komanduri, Z.B. Hou, Thermal modeling of the metal cutting process-Part III: temperature rise distribution due to the combined effects of shear plane heat source and the tool–chip interface frictional heat source, International Journal of Mechanical Sciences, 43, 1, 89–107, 2001.
  • 21. S.P. Gadaj, W.K. Nowacki, H. Tobushi, Temperature evolution during tensile test of TiNi shape memory alloy, Archives of Mechanics, 51, 6, 649–663, 1999.
  • 22. S.P. Gadaj, W.K. Nowacki, E.A. Pieczyska, Temperature evolution in deformed shape memory alloy, Infrared Physics & Technology, 43, 151–155, 2002.
  • 23. C. Grabe, O.T. Bruhns, On the viscous and strain rate dependent behavior of polycrystalline NiTi, International Journal of Solids and Structures, 45, 1876–1895, 2008.
  • 24. W. Chen, B. Song, Temperature dependence of a NiTi shape memory alloy’s superelastic behavior at a high strain rate, Journal of Mechanics of Materials and Structures, 1, 2, 339–356, 2006.
  • 25. C. Liu, J. Jiang, M. Zou, A generalized three-wave method for nonlinear evolution equations, International Journal of Nonlinear Sciences & Numerical Simulation, 11, 489–494, 2010.
  • 26. F. Čmiel, J. Solař, Termographical measurement of the surface temperature and emissivity of glossy materials using the method of four points, Advanced Materials Research, 1122, 195–200, 2015.
  • 27. R. Kapoor, S. Nemat-Nasser, Determination of temperature rise during high strain rate deformation, Mechanics of Materials, 27, 1–12, 1998.
  • 28. C. Lexcellent, M.R. Laydi, V. Taillebot, Analytical prediction of the phase trans formation onset zone at a crack tip of a shape memory alloy exhibiting asymmetry between tension and compression, International Journal of Fracture, 169, 1, 1–13, 2010.
  • 29. L. Wang, Foundations of Stress Waves, 1st ed., Elsevier, Oxford, 2007.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7c26a3a-57ff-4f69-a8db-009d239b40e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.