PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of additional magnets and iron components in the rotor on flux control of a hybrid-excited synchronous machine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hybrid excitation in electrical machines is a technology that combines the advantages of field windings and permanent magnets for exciting magnetic flux. Hybrid excitation with controllable flux gives specific benefits that can be used in applications, such as electric vehicle motors and wind power generators. The paper presents an analysis of the influence of additional magnets and iron components embedded in rotor geometry on magnetic flux control of the Electric Controlled Permanent Magnet Synchronous machine (ECPMS-machine). 3D-finite element analyses of no-load magnetic flux density distribution, magnetic flux linkage, back electromotive force (BEMF) characteristics performed at different field windings conditions of the machine in three rotor design cases have been carried out and discussed. Experimental verification on the machine prototype with a selected case of the rotor design has been performed.
Rocznik
Strony
603--616
Opis fizyczny
Bibliogr. 32 poz., fot., rys., tab., wykr., wz.
Twórcy
  • West Pomeranian University of Technology, Department of Electrical Machines and Drives ul. Sikorskiego 37, 70-313 Szczecin, Poland
  • West Pomeranian University of Technology, Department of Electrical Machines and Drives ul. Sikorskiego 37, 70-313 Szczecin, Poland
Bibliografia
  • [1] Amara Y., Hamid B.A., Gabsi M., Hybrid Excited Synchronous Machines: Topologies, Design and Analysis, John Wiley & Sons (2024).
  • [2] Hlioui S., Gabsi M., Ahmed H.B., Barakat G., Amara Y., Chabour F., Paulides J.J.H., Hybrid excited synchronous machines, IEEE Transactions on Magnetics, vol. 58, iss. 2, 8101610 (2022), DOI: 10.1109/TMAG.2021.3079228.
  • [3] Capolino G.-A., Cavagnino A., New trends in electrical machines technology—Part II, IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4931–4936 (2014), DOI: 10.1109/TIE.2013.2295770.
  • [4] Zhu Z.Q., Cai S., Hybrid excited permanent magnet machines for electric and hybrid electric vehicles, CES Trans. Electr. Mach. Syst., vol. 3, no. 3, pp. 233–247 (2019), DOI: 10.30941/CESTEMS.2019.00032.
  • [5] Asfirane S., Hlioui S., Amara Y., Gabsi M., Study of a hybrid excitation synchronous machine: Modeling and experimental validation, Math. Comput. Appl., vol. 24, no. 2, pp. 34 (2019), DOI: 10.3390/mca24020034.
  • [6] Wang Q., Niu S., Luo X., A Novel Hybrid Dual-PM Machine Excited by AC with DC Bias for Electric Vehicle Propulsion, IEEE Transactions on Industrial Electronics, vol. 64, iss. 9, pp. 6908−6919 (2017), DOI: 10.1109/TIE.2017.2682778.
  • [7] Hua H., Zhu Z.Q., Zhan H., Novel Consequent-Pole Hybrid Excited Machine with Separated Excitation Stator, IEEE Transactions on Industrial Electronics, vol. 63, iss. 8, pp. 4718–4728 (2016), DOI: 10.1109/TIE.2016.2559447.
  • [8] Afinowi I.A.A., Zhu Z.Q., Guan Y., Mipo J.C., Farah P., Hybrid-Excited Doubly Salient Synchronous Machine with Permanent Magnets Between Adjacent Salient Stator Poles, IEEE Transactions on Magnetics, vol. 51, no. 10, 8107909 (2015), DOI: 10.1109/TMAG.2015.2446951.
  • [9] Zepp L.P., Medlin J.W., Brushless permanent magnet motor or alternator with variable axial rotor/stator alignment to increase speed capability, AU2003217963A1 (2003).
  • [10] Tapia J.A., Leonardi F., Lipo T.A., Consequent-Pole Permanent-Magnet Machine with Extended Field-Weakening Capability, IEEE Trans. Ind. Appl., vol. 39, pp. 1704–1709 (2003), DOI: 10.1109/ TIA.2003.818993.
  • [11] Kong L., Wen X., Fan T., A new method to plan the optimal field excitation current trajectory in a hybrid excitation machine, In Proceedings of the 2011 International Conference on Electrical Machines and Systems, Beijing, China, pp. 20–23 (2011), DOI: 10.1109/ICEMS.2011.6073691.
  • [12] Mörée G., Leijon M., Overview of Hybrid Excitation in Electrical Machines, Energies, vol. 15, no. 19, 7254 (2022), DOI: 10.3390/en15197254.
  • [13] Paplicki P., Influence of Magnet and Flux-Barrier Arrangement on Flux Control Characteristics of Hybrid Excited ECPMS-machine, Elektron. Elektrotech., vol. 23, pp. 15–20 (2017), DOI: 10.5755/j01.eie.23.2.14461.
  • [14] Wardach M., Paplicki P., Palka R., Hybrid Excited Machine with Flux Barriers and Magnetic Bridges, Energies, vol. 11, 676 (2018), DOI: 10.3390/en11030676.
  • [15] Di Barba P. et al., Hybrid excited synchronous machine with flux control possibility, International Journal of Applied Electromagnetics and Mechanics, vol. 52, no. 3–4, pp. 1615–1622 (2016), DOI: 10.3233/JAE-162190.
  • [16] Paplicki P., Prajzendanc P., Wardach M., Palka R., Cierzniewski K., Pstrokonski R., Influence of Geometry of Iron Poles on the Cogging Torque of a Field Control Axial Flux Permanent Magnet Machine, Int. J. Appl. Electromagn. Mech., vol. 69, pp. 179–188 (2022), DOI: 10.3233/JAE-210182.
  • [17] Prajzendanc P., Paplicki P., Performance Evaluation of an Axial Flux Machine with a Hybrid Excitation Design, Energies, vol. 15, 2733 (2022), DOI: 10.3390/en15082733.
  • [18] Wardach M., Palka R., Paplicki P., Prajzendanc P., Zarebski T., Modern Hybrid Excited Electric Machines, Energies, vol. 13, 5910 (2020), DOI: 10.3390/en13225910.
  • [19] Tapia J.A., Leonardi F., Lipo T.A., Consequent pole permanent magnet machine with field weakening capability, In Proceedings of the IEMDC 2001 IEEE International Electric Machines and Drives Conference, Cambridge, MA, USA, pp. 126–131 (2001).
  • [20] Tapia J.A., Leonardi F., Lipo T.A., A design procedure for a PM machine with extended field weakening capability, In Proceedings of the Conference Record of the 2002 IEEE Industry Applications Conference 37th IAS Annual Meeting Pittsburgh, PA, USA, vol. 3, pp. 1928–1935 (2002).
  • [21] Kosaka T., Matsui N., Hybrid excitation machines with powdered iron core for electrical traction drive applications, In Proceedings of the 2008 International Conference on Electrical Machines and Systems, Wuhan, China, pp. 2974–2979 (2008).
  • [22] Amemiya J., Chiba A., Dorrell D.G., Fukao T., Basic characteristics of a consequent-pole-type bearingless motor, IEEE Trans. Magn., vol. 41, pp. 82–89 (2005), DOI: 10.1109/TMAG.2004.840179.
  • [23] Asama J., Amada M., Takemoto M., Chiba A., Fukao T., Rahman A., Voltage Characteristics of a Consequent-Pole Bearingless PM Motor with Concentrated Windings, IEEE Trans. Magn., vol. 45, pp. 2823–2826 (2009), DOI: 10.1109/TMAG.2009.2018679.
  • [24] Asano Y., Mizuguchi A., Amada M., Asama J., Chiba A., Ooshima M., Takemoto M., Fukao T., Ichikawa O., Dorrell D.G., Development of a Four-Axis Actively Controlled Consequent-Pole-Type Bearingless Motor, IEEE Trans. Ind. Appl., vol. 45, pp. 1378–1386 (2009), DOI: 10.1109/TIA.2009.2023498.
  • [25] Ayub M., Jawad G., Kwon B.I., Consequent-Pole Hybrid Excitation Brushless Wound Field Synchronous Machine with Fractional Slot Concentrated Winding, IEEE Trans. Magn., vol. 55, no. 7, 8203805 (2019), DOI: 10.1109/TMAG.2018.2890509.
  • [26] Li J., Wang K., Zhu, S.S., Liu C., Integrated-Induction-Based Hybrid Excitation Brushless DC Generator with Consequent-Pole Rotor, IEEE Trans. Transp. Electrification, vol. 8, pp. 2233–2248 (2022), DOI: 10.1109/TTE.2021.3131307.
  • [27] Hlioui S., Gabsi M., Ahmed H.B., Barakat G., Amara Y., Chabour F., Paulides J.J.H., Hybrid Excited Synchronous Machines, IEEE Trans. Magn., vol. 58, iss. 2, 8101610 (2021), DOI: 10.1109/TMAG.2021.3079228.
  • [28] Paplicki P., Piotuch R., Improved Control System of PM Machine with Extended Field Control Capability for EV Drive, Mechatronics - Springer International Publishing, Ideas for Industrial Application, vol. 317, pp. 125–132 (2015), DOI: 10.1007/978-3-319-10990-9_12.
  • [29] Amara Y., Hlioui S., Ahmed H.B., Gabsi M., Power Capability of Hybrid Excited Synchronous Motors in Variable Speed Drives Applications, IEEE Trans. Magn., vol. 55, 8204312 (2019), DOI: 10.1109/TMAG.2019.2911599.
  • [30] Ammar A., Berbecea A.C., Gillon F., Brochet P., Influence of the ratio of hybridization on the performances of synchronous generator with Hybrid Excitation, In Proceedings of the 2012 XXth International Conference on Electrical Machines, Marseille, France, pp. 2921–2926 (2012).
  • [31] Amara Y., Hlioui S., Ben Ahmed H., Gabsi M., Pre-optimization of hybridization ratio in hybrid excitation synchronous machines using electrical circuits modelling, Math. Comput. Simul., vol. 184, pp. 118–136 (2020), DOI: 10.1016/j.matcom.2020.04.024.
  • [32] Shah Mohammadi A., Trovão J.P., Dubois M.R., Hybridisation ratio for hybrid excitation synchronous motors in electric vehicles with enhanced performance, IET Electr. Syst. Transp., vol. 8, no. 1, pp. 12–19 (2018), DOI: 10.1049/iet-est.2017.0029.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7bf02ee-895b-40f9-8530-abc2167a9368
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.