PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of singular traces on the weak trace class ideal generated by exponentiation invariant extended limits

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper studies the subset of singular traces generated by exponentiation-invariant extended limits. We describe relations between this subset and other important subsets of singular traces. We prove several conditions for measurability of operators from the weak trace class ideal with respect to the traces generated by exponentiation-invariant extended limits. We resolve an open question raised in [S. Lord, F. Sukochev, Measure theory in noncommutative spaces, SIGMA Symmetry Integrability Geom. Methods Appl. 6 (2010), paper 072, 36] in the setting of the weak trace class ideal.
Rocznik
Strony
127--145
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • School of Mathematics and Statistics, University of New South Wales, Kensington, 2052, NSW, Australia
autor
  • School of Mathematics and Statistics, University of New South Wales, Kensington, 2052, NSW, Australia
Bibliografia
  • [l] E. A. Alekhno, E. M. Semenov, F. A. Sukochev, and A. S. Usachev, Order and geometric properties of the set of Banach limits, St. Petersburg Math., in press.
  • [2] E. A. Alekhno, E.M. Semenov, F.A. Sukochev, and A. S. Usachev, Order properties of the set of Banach limits, Dokl. Akad. Nauk 91 (2015), no. 1, 20-22, DOI 10.1134/sl064562415010068.
  • [3] M.-T. Benameur and T. Fack, Type II non-commutative geometry. I. Dixmier trace in von Neumann algebras, Adv. Math. 199 (2006), no. 1, 29-87, DOI 10.1016/j.aim.2004.11.001.
  • [4] A. Carey, J. Phillips, A. Rennie, and F. Sukochev, The Hochschild class of the Chern character for semifinite spectral triples, J. Funct. Anal. 213 (2004), no. 1,111-153, DOI 10.1016/j.jfa.2003.11.016.
  • [5] A. Carey, J. Phillips, and F. Sukochev, Spectral flow and Dixmier traces, Adv. Math. 173 (2003), no. 1, 68-113, DOI 10.1016/S0001-8708(02)00015-4.
  • [6] A. Carey, A. Rennie, F. Sukochev, and D. Zanin, Universal measurability and the Hochschild class of the Chern character, J. Spectr. Theory 6 (2016), 1-41, DOI 10.4171/J ST/116.
  • [7] A. L. Carey, A. Rennie, A. Sedaev, and F. Sukochev, The Dixmier trace and asymptotics of zeta functions, J. Funct. Anal. 249 (2007), no. 2, 253-283, DOI 10.1016/j.jfa.2007.04.011.
  • [8] A. Connes, The action functional in noncommutative geometry, Comm. Math. Phys. 117 (1988), no. 673-683.
  • [9] J. Dixmier, Existence de traces non normales, C. R. Acad. Sci. Paris Ser. A-B 262 (1966), A1107-AU08.
  • [10] P. G. Dodds, A. A. Sedaev, E. M. Semenov, and F. A. Sukochev, Singular symmetric functionals, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 290, 42-71,178; reprinted in Vol. 30 2002.
  • [11] P. G. Dodds, B. de Pagter, A. A. Sedaev, E. M. Semenov, and F. A. Sukochev, Singular symmetric functionals and Banach limits with additional invariance properties, Izv. Ross. Akad. Nauk Ser. Mat. 67 (2003), no. 6, 111-136, DOI 10.1070/IM2003v067n06ABEH000461.
  • [12] M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), no. 1,228-249.
  • [13] T. Figiel and N. Kalton, Symmetric linear functionals on function spaces, Function spaces, interpolation theory and related topics (Lund, 2000), de Gruyter, Berlin, 2002, 311-332.
  • [14] V. Gayraland and F. Sukochev, Dixmier traces and extrapolation description of noncommutative Lorentz spaces, J. Funct. Anal. 266 (2014), no. 10, 6256-6317, DOI 10.1016/j.jfa.2014.02.036.
  • [15] L. Hörmander, The analysis of linear partial differential operators. III, Grundlehren der Mathematischen Wissenschaften, vol. 274, Springer-Verlag, Berlin 1994; Pseudo-differential operators, Corrected reprint of the 1985 original.
  • [16] S. G. Krein, Y. I. Petunin, and E. M. Semenov, Interpolation of linear operators, Translations of Mathematical Monographs, vol. 54, American Mathematical Society, Providence, R.1.1982.
  • [17] S. Lord, A. Sedaev, and F. Sukochev, Dixmier traces as singular symmetric functionals and applications to measurable operators, J. Funct. Anal. 224 (2005), no. 1,72-106, DOI 10.1016/j.jfa.2005.01.002.
  • [18] S. Lord and F. Sukochev, Measure theory in noncommutative spaces, SIGMA Symmetry Integrability Geom. Methods Appl. 6 (2010), Paper 072, 36.
  • 1[9] S. Lord, F. Sukochev, and D. Zanin, Singular Traces: Theory and Applications, Studies in Mathematics, vol. 46, De Gruyter 2012.
  • [20] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
  • [21] A. Pietsch, Traces on operator ideals and related linear forms on sequence ideals (parti), Indag. Math. (N.S.) 25 (2014), no. 2, 341-365, DOI 10.1016/j.indag.2012.08.008.
  • [22] A. Pietsch, Traces on operator ideals and related linear forms on sequence ideals (part 11), Integral Equations Operator Theory 79 (2014), no. 2, 255-299, DOI 10.1007/s00020-013-2U4-9.
  • [23] A. Pietsch, Traces on operator ideals and related linear forms on sequence ideals (part 111), J. Math. Anal. Appl. 421 (2015), no. 2, 971-981, DOI 10.1016/j.jmaa.2014.07.069.
  • [24] A. A. Sedaev and F. A, Sukochev, Dixmier measurability in Marcinkiewicz spaces and applications, J. Funct. Anal. 265 (2013), no. 12, 3053-3066, DOI 10.1016/j.jfa.2013.08.014.
  • [25] E. M. Semenov and F. A. Sukochev, Invariant Banach limits and applications, J. Funct. Anal. 259 (2010), no. 6, 1517-1541, DOI 10.1016/j.jfa.2010.05.011.
  • [26] E. M. Semenov, F. A. Sukochev, A. S. Usachev, and D. V. Zanin, Banach limits and traces on £1,00, Adv. Math. 285 (2015), 568-628, DOI 10.1016/j.aim.2015.08.010.
  • [27] L. Sucheston, Banach limits, Amer. Math. Monthly 74 (1967), 308-311.
  • [28] F. Sukochev, A. Usachev, and D. Zanin, Generalized limits with additional invariance properties and their applications to noncommutative geometry, Adv. Math. 239 (2013), 164-189, DOI 10.1016/j.aim.2013.02.012.
  • [29] F. Sukochev, A. Usachev, and D. Zanin, On the distinction between the classes of Dixmier and Connes-Dixmier traces, Proc. Amer. Math. Soc. 141 (2013), no. 6, 2169-2179, DOI 10.1090/S0002-9939-2012-U853-2.
  • [30] A. Usachev and D. Zanin, Dixmier traces generated by exponentiation invariant generalised limits, J. Noncommut. Geom. 8 (2014), no. 2,321-336, DOI 10.4171/jncg/158.
  • [31] F. Sukochev and D. Zanin, Fubini theorem in noncommutative geometry, submitted manuscript.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7bcda2a-b8af-43e0-be8e-5be8d6fb436c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.