Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Pulmonary tuberculosis is a worldwide epidemic that can only be fought effectively with early and accurate diagnosis and proper disease management. The means of diagnosis and disease management should be easily accessible, cost effective and be readily available in the high tuberculosis burdened countries where it is most needed. Fortunately, the fast development of computer science in recent years has ensured that medical images can accurately be quantified. Radiomics is one such tool that can be used to quantify medical images. This review article focuses on the literature currently available on the application of radiomics explicitly for the purpose of diagnosis, differentiation from other pulmonary diseases and disease management of pulmonary tuberculosis. Despite using a formal search strategy, only five articles could be found on the application of radiomics to pulmonary tuberculosis. In all five articles reviewed, radiomic feature extraction was successfully used to quantify digital medical images for the purpose of comparing, or differentiating, pulmonary tuberculosis from other pulmonary diseases. This demonstrates that the use of radiomics for the purpose of tuberculosis disease management and diagnosis remains a valuable data mining opportunity not yet realised.
Słowa kluczowe
Rocznik
Tom
Strony
251--259
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
- Department of Nuclear Medicine, University of Pretoria, South Africa
autor
- Discipline of Medical Imaging Sciences, University of Sydney, Australia
autor
- Department of Nuclear Medicine, University of Pretoria, South Africa
Bibliografia
- 1. WHO. Global tuberculosis report 2020. Report. Geneva: World Health Organization, 2020.
- 2. Prevention CfDCa [Internet]. Testing for tuberculosis (tb). Available from: https://www.cdc.gov/tb/publications/factsheets/testing/tb_testing.htm
- 3. Tan JH, Acharya UR, Tan C, Abraham KT, Lim CM. Computer-assisted diagnosis of tuberculosis: A first order statistical approach to chest radiograph. Journal of Medical Systems. 2012; 36(5):2751-9. https://doi.org/10.1007/s10916-011-9751-9
- 4. Lewinsohn DM, Leonard MK, LoBue PA, Cohn DL, Daley CL, Desmond E, et al. Official american thoracic society/infectious diseases society of america/centers for disease control and prevention clinical practice guidelines: Diagnosis of tuberculosis in adults and children. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2017; 64(2):111-5. https://doi.org/10.1093/cid/ciw778
- 5. Chen RY, Dodd LE, Lee M, Paripati P, Hammoud DA, Mountz JM, et al. Pet/ct imaging correlates with treatment outcome in patients with multidrug-resistant tuberculosis. Science translational medicine. 2014;6(265):265ra166. https://doi.org/10.1126/scitranslmed.3009501
- 6. Drain PK, Gardiner J, Hannah H, Broger T, Dheda K, Fielding K, et al. Guidance for studies evaluating the accuracy of biomarkerbased nonsputum tests to diagnose tuberculosis. Journal of Infectious Diseases. 2019;220:S108-S115. https://doi.org/10.1093/infdis/jiz356
- 7. Goletti D, Petruccioli E, Joosten SA, Ottenhoff TH. Tuberculosis Biomarkers: From Diagnosis to Protection. Infect Dis Rep. 201624;8(2):6568. https://doi.org/10.4081/idr.2016.6568
- 8. Melendez J, Ginneken Bv, Maduskar P, Philipsen RHHM, Ayles H, Sánchez CI. On combining multiple-instance learning and active learning for computer-aided detection of tuberculosis. IEEE Transactions on Medical Imaging. 2016;35(4):1013-24. https://doi.org/10.1109/TMI.2015.2505672
- 9. Santosh KC, Antani S. Automated chest x-ray screening: Can lung region symmetry help detect pulmonary abnormalities? IEEE transactions on medical imaging. 2018;37(5):1168-77. https://doi.org/10.1109/TMI.2017.2775636
- 10. Skoura E, Zumla A, Bomanji J. Imaging in tuberculosis. International Journal of Infectious Diseases. 2015;32:87-93. https://doi.org/10.1016/j.ijid.2014.12.007
- 11. Chassagnon G, Vakalopoulou M, Paragios N, Revel MP. Artificial intelligence applications for thoracic imaging. European Journal of Radiology. 2020;123:108774. https://doi.org/10.1016/j.ejrad.2019.108774
- 12. Mettler FA, Jr., Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: A catalog. Radiology. 2008; 248(1):254-63. https://doi.org/10.1148/radiol.2481071451
- 13. Van’t Hoog AH, Meme HK, van Deutekom H, et al. High sensitivity of chest radiograph reading by clinical officers in a tuberculosis prevalence survey. Int J Tuberc Lung Dis. 2011;15(10):1308-14. https://doi.org/10.5588/ijtld.11.0004.
- 14. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749-762. https://doi.org/10.1038/nrclinonc.2017.141
- 15. Hogeweg L, Sánchez CI, Maduskar P, Philipsen R, Story A, Dawson R, et al. Automatic detection of tuberculosis in chest radiographs using a combination of textural, focal, and shape abnormality analysis. IEEE Transactions on Medical Imaging. 2015;34(12):2429-42. https://doi.org/10.1109/TMI.2015.2405761
- 16. Ginneken Bv, Katsuragawa S, ter Haar Romeny, Kunio D, Viergever MA. Automatic detection of abnormalities in chest radiographs using local texture analysis. IEEE Transactions on Medical Imaging. 2002;21(2):139-49. https://doi.org/10.1109/42.993132
- 17. Shen R, Cheng I, Basu A. A hybrid knowledge-guided detection technique for screening of infectious pulmonary tuberculosis from chest radiographs. IEEE Transactions on Biomedical Engineering. 2010;57(11):2646-56. https://doi.org/10.1109/TBME.2010.2057509
- 18. Melendez J, Ginneken Bv, Maduskar P, Philipsen RHHM, Reither K, Breuninger M, et al. A novel multiple-instance learning-based approach to computer-aided detection of tuberculosis on chest x-rays. IEEE Transactions on Medical Imaging. 2015;34(1):179-92. https://doi.org/10.1109/TMI.2014.2350539
- 19. Jaeger S, Juarez-Espinosa OH, Candemir S, Poostchi M, Yang F, Kim L, et al. Detecting drug-resistant tuberculosis in chest radiographs. International journal of computer assisted radiology and surgery. 2018;13(12):1915-25. https://doi.org/10.1007/s11548-018-1857-9
- 20. Abideen ZU, Ghafoor M, Munir K, Saqib M, Ullah A, Zia T, et al. Uncertainty assisted robust tuberculosis identification with bayesian convolutional neural networks. IEEE Access. 2020;8:22812-25. https://doi.org/10.1109/ACCESS.2020.2970023
- 21. Summers RM. Are we at a crossroads or a plateau? Radiomics and machine learning in abdominal oncology imaging. Abdominal Radiology. 2019;44(6):1985-9. https://doi.org/10.1007/s00261-018-1613-1
- 22. Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: Threat or opportunity? Radiologists again at the forefront of innovation in medicine. European Radiology Experimental. 2018;2(1):1-10. https://doi.org/10.1186/s41747-018-0061-6
- 23. Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, et al. Radiomics: The facts and the challenges of image analysis. European Radiology Experimental. 2018;2(1):1-8. https://doi.org/10.1186/s41747-018-0068-z
- 24. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data. Radiology. 2016; 278(2):563-77. https://doi.org/10.1148/radiol.2015151169
- 25. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al. Radiomics: The process and the challenges. Magnetic resonance imaging. 2012;30(9):1234-48. https://doi.org/10.1016/j.mri.2012.06.010
- 26. Papanikolaou N, Matos C, Koh DM. How to develop a meaningful radiomic signature for clinical use in oncologic patients. Cancer Imaging. 2020;20(1):33. https://doi.org/10.1186/s40644-020-00311-4
- 27. Liu Q, Li J, Liu F, Yang W, Ding J, Chen W, et al. A radiomics nomogram for the prediction of overall survival in patients with hepatocellular carcinoma after hepatectomy. Cancer Imaging. 2020;20(1):82. https://doi.org/10.1186/s40644-020-00360-9
- 28. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. Computational radiomics system to decode the radiographic phenotype. Cancer research. 2017;77(21):e104-e7. https://doi.org/10.1158/0008-5472.CAN-17-0339
- 29. Bei W, Min L, He M, Fangfang H, Yan W, Shunying Z, et al. Computed tomography-based predictive nomogram for differentiating primary progressive pulmonary tuberculosis from community-acquired pneumonia in children. BMC Medical Imaging. 2019;19:63. https://doi.org/10.1186/s12880-019-0355-z
- 30. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, Granton P, et al. Radiomics: Extracting more information from medical images using advanced feature analysis. European Journal of Cancer. 2012;48(4):441-6. https://doi.org/10.1016/j.ejca.2011.11.036
- 31. Moher D, Liberati A, Tetzlaff J, Altman DG, The PG. Preferred reporting items for systematic reviews and meta-analyses: The prisma statement. PLOS Medicine. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097
- 32. Shi W, Zhou L, Peng X, Ren H, Wang Q, Shan F, et al. Hiv-infected patients with opportunistic pulmonary infections misdiagnosed as lung cancers: The clinicoradiologic features and initial application of ct radiomics. Journal of thoracic disease. 2019;11(6):2274-86. https://doi.org/10.21037/jtd.2019.06.22
- 33. Feng B, Chen X, Chen Y, Liu K, Li K, Liu X, et al. Radiomics nomogram for preoperative differentiation of lung tuberculoma from adenocarcinoma in solitary pulmonary solid nodule. European Journal of Radiology. 2020;128. https://doi.org/10.1016/j.ejrad.2020.109022
- 34. Cui EN, Yu T, Shang S-J, Wang X-Y, Jin Y-L, Dong Y, et al. Radiomics model for distinguishing tuberculosis and lung cancer on computed tomography scans. World Journal of Clinical Cases. 2020;8(21):5203-12. https://doi.org/10.12998/wjcc.v8.i21.5203
- 35. Du D, Gu J, Chen X, Lv W, Feng Q, Rahmim A, et al. Integration of pet/ct radiomics and semantic features for differentiation between active pulmonary tuberculosis and lung cancer. Molecular Imaging & Biology. 2021;23(2):287-298. https://doi.org/10.1007/s11307-020-01550-4
- 36. Cui EN, Yu T, Shang SJ, Wang XY, Jin YL, Dong Y, et al. Radiomics model for distinguishing tuberculosis and lung cancer on computed tomography scans. World journal of clinical cases. 2020;8(21):5203-12. https://doi.org/10.12998/wjcc.v8.i21.5203
- 37. Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, et al. The image biomarker standardisation initiative: Standardised quantitative radiomics for high-throughput image-based phenotyping. Radiology. 2020;295(2):328-38. https://doi.org/10.1148/radiol.2020191145
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7b8f614-8e7d-45f2-9796-12c71014b66c